Note
This documents the development version of NetworkX. Documentation for the current release can be found here.
networkx.algorithms.traversal.edgedfs.edge_dfs¶

edge_dfs
(G, source=None, orientation=None)[source]¶ A directed, depthfirstsearch of edges in
G
, beginning atsource
.Yield the edges of G in a depthfirstsearch order continuing until all edges are generated.
 Parameters
 Ggraph
A directed/undirected graph/multigraph.
 sourcenode, list of nodes
The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched.
 orientationNone  ‘original’  ‘reverse’  ‘ignore’ (default: None)
For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to ‘reverse’ every edge is traversed in the reverse direction. When set to ‘ignore’, every edge is treated as undirected. When set to ‘original’, every edge is treated as directed. In all three cases, the yielded edge tuples add a last entry to indicate the direction in which that edge was traversed. If orientation is None, the yielded edge has no direction indicated. The direction is respected, but not reported.
 Yields
 edgedirected edge
A directed edge indicating the path taken by the depthfirst traversal. For graphs,
edge
is of the form(u, v)
whereu
andv
are the tail and head of the edge as determined by the traversal. For multigraphs,edge
is of the form(u, v, key)
, wherekey
is the key of the edge. When the graph is directed, thenu
andv
are always in the order of the actual directed edge. If orientation is not None then the edge tuple is extended to include the direction of traversal (‘forward’ or ‘reverse’) on that edge.
See also
dfs_edges
Notes
The goal of this function is to visit edges. It differs from the more familiar depthfirst traversal of nodes, as provided by
networkx.algorithms.traversal.depth_first_search.dfs_edges()
, in that it does not stop once every node has been visited. In a directed graph with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited if not for the functionality provided by this function.Examples
>>> nodes = [0, 1, 2, 3] >>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]
>>> list(nx.edge_dfs(nx.Graph(edges), nodes)) [(0, 1), (1, 2), (1, 3)]
>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes)) [(0, 1), (1, 0), (2, 1), (3, 1)]
>>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes)) [(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)]
>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes)) [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)]
>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation="ignore")) [(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')]
>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation="ignore")) [(0, 1, 0, 'forward'), (1, 0, 0, 'forward'), (1, 0, 1, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 0, 'reverse')]