from_biadjacency_matrix#
- from_biadjacency_matrix(A, create_using=None, edge_attribute='weight', *, row_order=None, column_order=None)[source]#
Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse array.
- Parameters:
- Ascipy sparse array
A biadjacency matrix representation of a graph
- create_usingNetworkX graph
Use specified graph for result. The default is Graph()
- edge_attributestring
Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)).
- row_orderlist, optional (default: range(number of rows in
A)) A list of the nodes represented by the rows of the matrix
A. Will be represented in the graph as nodes with thebipartiteattribute set to 0. Must be the same length as the number of rows inA.- column_orderlist, optional (default: range(number of columns in
A)) A list of the nodes represented by the columns of the matrix
A. Will be represented in the graph as nodes with thebipartiteattribute set to 1. Must be the same length as the number of columns inA.
- Returns:
- GNetworkX graph
A bipartite graph with edges from the biadjacency matrix
A, and nodes fromrow_orderandcolumn_order.
- Raises:
- ValueError
If
row_orderorcolumn_orderare provided and are not the same length as the number of rows or columns inA, respectively.
See also
biadjacency_matrixfrom_numpy_array
Notes
The nodes are labeled with the attribute
bipartiteset to an integer 0 or 1 representing membership in thetopset (bipartite=0) orbottomset (bipartite=1) of the bipartite graph.If
create_usingis an instance ofnetworkx.MultiGraphornetworkx.MultiDiGraphand the entries ofAare of typeint, then this function returns a multigraph (of the same type ascreate_using) with parallel edges. In this case,edge_attributewill be ignored.References
[1] https://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
Additional backends implement this function
cugraph : GPU-accelerated backend.