is_biconnected#
- is_biconnected(G)[source]#
Returns True if the graph is biconnected, False otherwise.
A graph is biconnected if, and only if, it cannot be disconnected by removing only one node (and all edges incident on that node). If removing a node increases the number of disconnected components in the graph, that node is called an articulation point, or cut vertex. A biconnected graph has no articulation points.
- Parameters:
- GNetworkX Graph
An undirected graph.
- Returns:
- biconnectedbool
True if the graph is biconnected, False otherwise.
- Raises:
- NetworkXNotImplemented
If the input graph is not undirected.
See also
Notes
The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node
n
is an articulation point if, and only if, there exists a subtree rooted atn
such that there is no back edge from any successor ofn
that links to a predecessor ofn
in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.References
[1]Hopcroft, J.; Tarjan, R. (1973). â€śEfficient algorithms for graph manipulationâ€ť. Communications of the ACM 16: 372â€“378. doi:10.1145/362248.362272
Examples
>>> G = nx.path_graph(4) >>> print(nx.is_biconnected(G)) False >>> G.add_edge(0, 3) >>> print(nx.is_biconnected(G)) True