_dispatchable#
- _dispatchable(func=None, *, name=None, graphs='G', edge_attrs=None, node_attrs=None, preserve_edge_attrs=False, preserve_node_attrs=False, preserve_graph_attrs=False, preserve_all_attrs=False, mutates_input=False, returns_graph=False, implemented_by_nx=True)[source]#
A decorator function that is used to redirect the execution of
func
function to its backend implementation.This decorator function dispatches to a different backend implementation based on the input graph types, and it also manages all the
backend_kwargs
. Usage can be any of the following decorator forms:@_dispatchable
@_dispatchable()
@_dispatchable(name="override_name")
@_dispatchable(graphs="graph_var_name")
@_dispatchable(edge_attrs="weight")
@_dispatchable(graphs={"G": 0, "H": 1}, edge_attrs={"weight": "default"})
with 0 and 1 giving the position in the signature function for graph objects. When
edge_attrs
is a dict, keys are keyword names and values are defaults.
- Parameters:
- funccallable, optional
The function to be decorated. If
func
is not provided, returns a partial object that can be used to decorate a function later. Iffunc
is provided, returns a new callable object that dispatches to a backend algorithm based on input graph types.- namestr, optional
The name of the algorithm to use for dispatching. If not provided, the name of
func
will be used.name
is useful to avoid name conflicts, as all dispatched algorithms live in a single namespace. For example,tournament.is_strongly_connected
had a name conflict with the standardnx.is_strongly_connected
, so we used@_dispatchable(name="tournament_is_strongly_connected")
.- graphsstr or dict or None, default “G”
If a string, the parameter name of the graph, which must be the first argument of the wrapped function. If more than one graph is required for the algorithm (or if the graph is not the first argument), provide a dict keyed to argument names with argument position as values for each graph argument. For example,
@_dispatchable(graphs={"G": 0, "auxiliary?": 4})
indicates the 0th parameterG
of the function is a required graph, and the 4th parameterauxiliary?
is an optional graph. To indicate that an argument is a list of graphs, do"[graphs]"
. Usegraphs=None
, if no arguments are NetworkX graphs such as for graph generators, readers, and conversion functions.- edge_attrsstr or dict, optional
edge_attrs
holds information about edge attribute arguments and default values for those edge attributes. If a string,edge_attrs
holds the function argument name that indicates a single edge attribute to include in the converted graph. The default value for this attribute is 1. To indicate that an argument is a list of attributes (all with default value 1), use e.g."[attrs]"
. If a dict,edge_attrs
holds a dict keyed by argument names, with values that are either the default value or, if a string, the argument name that indicates the default value.- node_attrsstr or dict, optional
Like
edge_attrs
, but for node attributes.- preserve_edge_attrsbool or str or dict, optional
For bool, whether to preserve all edge attributes. For str, the parameter name that may indicate (with
True
or a callable argument) whether all edge attributes should be preserved when converting. For dict of{graph_name: {attr: default}}
, indicate pre-determined edge attributes (and defaults) to preserve for input graphs.- preserve_node_attrsbool or str or dict, optional
Like
preserve_edge_attrs
, but for node attributes.- preserve_graph_attrsbool or set
For bool, whether to preserve all graph attributes. For set, which input graph arguments to preserve graph attributes.
- preserve_all_attrsbool
Whether to preserve all edge, node and graph attributes. This overrides all the other preserve_*_attrs.
- mutates_inputbool or dict, default False
For bool, whether the function mutates an input graph argument. For dict of
{arg_name: arg_pos}
, arguments that indicate whether an input graph will be mutated, andarg_name
may begin with"not "
to negate the logic (for example, this is used bycopy=
arguments). By default, dispatching doesn’t convert input graphs to a different backend for functions that mutate input graphs.- returns_graphbool, default False
Whether the function can return or yield a graph object. By default, dispatching doesn’t convert input graphs to a different backend for functions that return graphs.
- implemented_by_nxbool, default True
Whether the function is implemented by NetworkX. If it is not, then the function is included in NetworkX as an API to dispatch to backends. Default is True.