Expected Degree Sequence#

Random graph from given degree sequence.

Degree histogram
degree (#nodes) ****
 0 ( 0)
 1 ( 0)
 2 ( 0)
 3 ( 0)
 4 ( 0)
 5 ( 0)
 6 ( 0)
 7 ( 0)
 8 ( 0)
 9 ( 0)
10 ( 0)
11 ( 0)
12 ( 0)
13 ( 0)
14 ( 0)
15 ( 0)
16 ( 0)
17 ( 0)
18 ( 0)
19 ( 0)
20 ( 0)
21 ( 0)
22 ( 0)
23 ( 0)
24 ( 0)
25 ( 0)
26 ( 0)
27 ( 0)
28 ( 0)
29 ( 1) *
30 ( 0)
31 ( 1) *
32 ( 1) *
33 ( 0)
34 ( 1) *
35 ( 0)
36 ( 5) *****
37 ( 4) ****
38 (10) **********
39 ( 9) *********
40 (10) **********
41 (14) **************
42 (18) ******************
43 (12) ************
44 (21) *********************
45 (20) ********************
46 (27) ***************************
47 (30) ******************************
48 (36) ************************************
49 (28) ****************************
50 (25) *************************
51 (18) ******************
52 (28) ****************************
53 (25) *************************
54 (30) ******************************
55 (24) ************************
56 (15) ***************
57 (18) ******************
58 (18) ******************
59 (14) **************
60 ( 8) ********
61 ( 2) **
62 ( 9) *********
63 ( 6) ******
64 ( 6) ******
65 ( 0)
66 ( 2) **
67 ( 1) *
68 ( 2) **
69 ( 0)
70 ( 0)
71 ( 1) *

import networkx as nx

# make a random graph of 500 nodes with expected degrees of 50
n = 500  # n nodes
p = 0.1
w = [p * n for i in range(n)]  # w = p*n for all nodes
G = nx.expected_degree_graph(w)  # configuration model
print("Degree histogram")
print("degree (#nodes) ****")
dh = nx.degree_histogram(G)
for i, d in enumerate(dh):
    print(f"{i:2} ({d:2}) {'*' * d}")

Total running time of the script: (0 minutes 0.023 seconds)

Gallery generated by Sphinx-Gallery