Note
Go to the end to download the full example code
Expected Degree Sequence#
Random graph from given degree sequence.
Degree histogram
degree (#nodes) ****
0 ( 0)
1 ( 0)
2 ( 0)
3 ( 0)
4 ( 0)
5 ( 0)
6 ( 0)
7 ( 0)
8 ( 0)
9 ( 0)
10 ( 0)
11 ( 0)
12 ( 0)
13 ( 0)
14 ( 0)
15 ( 0)
16 ( 0)
17 ( 0)
18 ( 0)
19 ( 0)
20 ( 0)
21 ( 0)
22 ( 0)
23 ( 0)
24 ( 0)
25 ( 0)
26 ( 0)
27 ( 0)
28 ( 0)
29 ( 0)
30 ( 1) *
31 ( 0)
32 ( 2) **
33 ( 1) *
34 ( 3) ***
35 ( 5) *****
36 ( 1) *
37 ( 8) ********
38 ( 5) *****
39 ( 7) *******
40 (10) **********
41 (14) **************
42 (19) *******************
43 (23) ***********************
44 (18) ******************
45 (19) *******************
46 (22) **********************
47 (21) *********************
48 (22) **********************
49 (27) ***************************
50 (34) **********************************
51 (38) **************************************
52 (27) ***************************
53 (23) ***********************
54 (29) *****************************
55 (26) **************************
56 (19) *******************
57 (12) ************
58 (17) *****************
59 (12) ************
60 ( 8) ********
61 ( 7) *******
62 ( 5) *****
63 ( 5) *****
64 ( 2) **
65 ( 4) ****
66 ( 1) *
67 ( 1) *
68 ( 1) *
69 ( 1) *
import networkx as nx
# make a random graph of 500 nodes with expected degrees of 50
n = 500 # n nodes
p = 0.1
w = [p * n for i in range(n)] # w = p*n for all nodes
G = nx.expected_degree_graph(w) # configuration model
print("Degree histogram")
print("degree (#nodes) ****")
dh = nx.degree_histogram(G)
for i, d in enumerate(dh):
print(f"{i:2} ({d:2}) {'*'*d}")
Total running time of the script: (0 minutes 0.023 seconds)