Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

# networkx.algorithms.shortest_paths.weighted.negative_edge_cycle¶

negative_edge_cycle(G, weight='weight')[source]

Returns True if there exists a negative edge cycle anywhere in G.

Parameters: G (NetworkX graph) weight (string or function) – If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edges[u, v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. negative_cycle – True if a negative edge cycle exists, otherwise False. bool

Examples

>>> import networkx as nx
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> print(nx.negative_edge_cycle(G))
False
>>> G[1][2]['weight'] = -7
>>> print(nx.negative_edge_cycle(G))
True


Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

This algorithm uses bellman_ford_predecessor_and_distance() but finds negative cycles on any component by first adding a new node connected to every node, and starting bellman_ford_predecessor_and_distance on that node. It then removes that extra node.