Node Classification¶
This module provides the functions for node classification problem.
The functions in this module are not imported
into the top level networkx
namespace.
You can access these functions by importing
the networkx.algorithms.node_classification
modules,
then accessing the functions as attributes of node_classification
.
For example:
>>> import networkx as nx
>>> from networkx.algorithms import node_classification
>>> G = nx.path_graph(4)
>>> G.edges()
EdgeView([(0, 1), (1, 2), (2, 3)])
>>> G.node[0]['label'] = 'A'
>>> G.node[3]['label'] = 'B'
>>> node_classification.harmonic_function(G) # doctest: +SKIP
['A', 'A', 'B', 'B']
Harmonic Function¶
Function for computing Harmonic function algorithm by Zhu et al.
References
Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August). Semi-supervised learning using gaussian fields and harmonic functions. In ICML (Vol. 3, pp. 912-919).
harmonic_function (G[, max_iter, label_name]) |
Node classification by Harmonic function |
Local and Global Consistency¶
Function for computing Local and global consistency algorithm by Zhou et al.
References
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with local and global consistency. Advances in neural information processing systems, 16(16), 321-328.
local_and_global_consistency (G[, alpha, …]) |
Node classification by Local and Global Consistency |