"""Functions for computing and verifying regular graphs."""
import networkx as nx
from networkx.utils import not_implemented_for
__all__ = ["is_regular", "is_k_regular", "k_factor"]
[docs]
@nx._dispatchable
def is_regular(G):
"""Determines whether a graph is regular.
A regular graph is a graph where all nodes have the same degree. A regular
digraph is a graph where all nodes have the same indegree and all nodes
have the same outdegree.
Parameters
----------
G : NetworkX graph
Returns
-------
bool
Whether the given graph or digraph is regular.
Examples
--------
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 1)])
>>> nx.is_regular(G)
True
"""
if len(G) == 0:
raise nx.NetworkXPointlessConcept("Graph has no nodes.")
n1 = nx.utils.arbitrary_element(G)
if not G.is_directed():
d1 = G.degree(n1)
return all(d1 == d for _, d in G.degree)
else:
d_in = G.in_degree(n1)
in_regular = (d_in == d for _, d in G.in_degree)
d_out = G.out_degree(n1)
out_regular = (d_out == d for _, d in G.out_degree)
return all(in_regular) and all(out_regular)
[docs]
@not_implemented_for("directed")
@nx._dispatchable
def is_k_regular(G, k):
"""Determines whether the graph ``G`` is a k-regular graph.
A k-regular graph is a graph where each vertex has degree k.
Parameters
----------
G : NetworkX graph
Returns
-------
bool
Whether the given graph is k-regular.
Examples
--------
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
>>> nx.is_k_regular(G, k=3)
False
"""
return all(d == k for n, d in G.degree)
[docs]
@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatchable(preserve_edge_attrs=True, returns_graph=True)
def k_factor(G, k, matching_weight="weight"):
"""Compute a `k`-factor of a graph.
A `k`-factor of a graph is a spanning `k`-regular subgraph.
A spanning `k`-regular subgraph of `G` is a subgraph that contains
each node of `G` and a subset of the edges of `G` such that each
node has degree `k`.
Parameters
----------
G : NetworkX graph
An undirected graph.
k : int
The degree of the `k`-factor.
matching_weight: string, optional (default="weight")
Edge attribute name corresponding to the edge weight.
If not present, the edge is assumed to have weight 1.
Used for finding the max-weighted perfect matching.
Returns
-------
NetworkX graph
A `k`-factor of `G`.
Examples
--------
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
>>> KF = nx.k_factor(G, k=1)
>>> KF.edges()
EdgeView([(1, 2), (3, 4)])
References
----------
.. [1] "An algorithm for computing simple k-factors.",
Meijer, Henk, Yurai Núñez-Rodríguez, and David Rappaport,
Information processing letters, 2009.
"""
# Validate minimum degree requirement.
if any(d < k for _, d in G.degree):
raise nx.NetworkXUnfeasible("Graph contains a vertex with degree less than k")
g = G.copy()
gadgets = []
# Replace each node with a gadget.
for node, degree in G.degree:
is_large = k >= degree / 2.0
# Create gadget nodes.
outer = [(node, i) for i in range(degree)]
if is_large:
core = [(node, i) for i in range(degree, 2 * degree - k)]
inner = []
else:
core = [(node, i) for i in range(2 * degree, 2 * degree + k)]
inner = [(node, i) for i in range(degree, 2 * degree)]
# Connect gadget nodes to neighbors.
g.add_edges_from(zip(outer, inner))
for outer_n, (neighbor, attrs) in zip(outer, g[node].items()):
g.add_edge(outer_n, neighbor, **attrs)
# Add internal edges.
g.add_edges_from((u, v) for u in core for v in (outer if is_large else inner))
g.remove_node(node)
gadgets.append((node, outer, core, inner))
# Find perfect matching.
m = nx.max_weight_matching(g, maxcardinality=True, weight=matching_weight)
if not nx.is_perfect_matching(g, m):
raise nx.NetworkXUnfeasible(
"Cannot find k-factor because no perfect matching exists"
)
# Keep only edges in matching.
g.remove_edges_from(e for e in g.edges if e not in m and e[::-1] not in m)
# Restore original nodes and remove gadgets.
for node, outer, core, inner in gadgets:
g.add_node(node)
core_set = set(core)
for outer_n in outer:
for neighbor, attrs in g._adj[outer_n].items():
if neighbor not in core_set:
g.add_edge(node, neighbor, **attrs)
break
g.remove_nodes_from(outer + core + inner)
return g