Source code for networkx.algorithms.isomorphism.isomorph

"""
Graph isomorphism functions.
"""

import itertools
from collections import Counter

import networkx as nx
from networkx.exception import NetworkXError

__all__ = [
    "could_be_isomorphic",
    "fast_could_be_isomorphic",
    "faster_could_be_isomorphic",
    "is_isomorphic",
]


[docs] @nx._dispatchable(graphs={"G1": 0, "G2": 1}) def could_be_isomorphic(G1, G2, *, properties="dtc"): """Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism. Parameters ---------- G1, G2 : graphs The two graphs `G1` and `G2` must be the same type. properties : str, default="dct" Determines which properties of the graph are checked. Each character indicates a particular property as follows: - if ``"d"`` in `properties`: degree of each node - if ``"t"`` in `properties`: number of triangles for each node - if ``"c"`` in `properties`: number of maximal cliques for each node Unrecognized characters are ignored. The default is ``"dtc"``, which compares the sequence of ``(degree, num_triangles, num_cliques)`` properties between `G1` and `G2`. Generally, ``properties="dt"`` would be faster, and ``properties="d"`` faster still. See Notes for additional details on property selection. Returns ------- bool A Boolean value representing whether `G1` could be isomorphic with `G2` according to the specified `properties`. Notes ----- The triangle sequence contains the number of triangles each node is part of. The clique sequence contains for each node the number of maximal cliques involving that node. Some properties are faster to compute than others. And there are other properties we could include and don't. But of the three properties listed here, comparing the degree distributions is the fastest. The "triangles" property is slower (and also a stricter version of "could") and the "maximal cliques" property is slower still, but usually faster than doing a full isomorphism check. """ # Check global properties if G1.order() != G2.order(): return False properties_to_check = set(properties) G1_props, G2_props = [], [] def _properties_consistent(): # Ravel the properties into a table with # nodes rows and # properties columns G1_ptable = [tuple(p[n] for p in G1_props) for n in G1] G2_ptable = [tuple(p[n] for p in G2_props) for n in G2] return sorted(G1_ptable) == sorted(G2_ptable) # The property table is built and checked as each individual property is # added. The reason for this is the building/checking the property table # is in general much faster than computing the properties, making it # worthwhile to check multiple times to enable early termination when # a subset of properties don't match # Degree sequence if "d" in properties_to_check: G1_props.append(G1.degree()) G2_props.append(G2.degree()) if not _properties_consistent(): return False # Sequence of triangles per node if "t" in properties_to_check: G1_props.append(nx.triangles(G1)) G2_props.append(nx.triangles(G2)) if not _properties_consistent(): return False # Sequence of maximal cliques per node if "c" in properties_to_check: G1_props.append(Counter(itertools.chain.from_iterable(nx.find_cliques(G1)))) G2_props.append(Counter(itertools.chain.from_iterable(nx.find_cliques(G2)))) if not _properties_consistent(): return False # All checked conditions passed return True
def graph_could_be_isomorphic(G1, G2): """ .. deprecated:: 3.5 `graph_could_be_isomorphic` is a deprecated alias for `could_be_isomorphic`. Use `could_be_isomorphic` instead. """ import warnings warnings.warn( "graph_could_be_isomorphic is deprecated, use `could_be_isomorphic` instead.", category=DeprecationWarning, stacklevel=2, ) return could_be_isomorphic(G1, G2)
[docs] @nx._dispatchable(graphs={"G1": 0, "G2": 1}) def fast_could_be_isomorphic(G1, G2): """Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism. Parameters ---------- G1, G2 : graphs The two graphs G1 and G2 must be the same type. Notes ----- Checks for matching degree and triangle sequences. The triangle sequence contains the number of triangles each node is part of. """ # Check global properties if G1.order() != G2.order(): return False # Check local properties d1 = G1.degree() t1 = nx.triangles(G1) props1 = [[d, t1[v]] for v, d in d1] props1.sort() d2 = G2.degree() t2 = nx.triangles(G2) props2 = [[d, t2[v]] for v, d in d2] props2.sort() if props1 != props2: return False # OK... return True
def fast_graph_could_be_isomorphic(G1, G2): """ .. deprecated:: 3.5 `fast_graph_could_be_isomorphic` is a deprecated alias for `fast_could_be_isomorphic`. Use `fast_could_be_isomorphic` instead. """ import warnings warnings.warn( "fast_graph_could_be_isomorphic is deprecated, use fast_could_be_isomorphic instead", category=DeprecationWarning, stacklevel=2, ) return fast_could_be_isomorphic(G1, G2)
[docs] @nx._dispatchable(graphs={"G1": 0, "G2": 1}) def faster_could_be_isomorphic(G1, G2): """Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism. Parameters ---------- G1, G2 : graphs The two graphs G1 and G2 must be the same type. Notes ----- Checks for matching degree sequences. """ # Check global properties if G1.order() != G2.order(): return False # Check local properties d1 = sorted(d for n, d in G1.degree()) d2 = sorted(d for n, d in G2.degree()) if d1 != d2: return False # OK... return True
def faster_graph_could_be_isomorphic(G1, G2): """ .. deprecated:: 3.5 `faster_graph_could_be_isomorphic` is a deprecated alias for `faster_could_be_isomorphic`. Use `faster_could_be_isomorphic` instead. """ import warnings warnings.warn( "faster_graph_could_be_isomorphic is deprecated, use faster_could_be_isomorphic instead", category=DeprecationWarning, stacklevel=2, ) return faster_could_be_isomorphic(G1, G2)
[docs] @nx._dispatchable( graphs={"G1": 0, "G2": 1}, preserve_edge_attrs="edge_match", preserve_node_attrs="node_match", ) def is_isomorphic(G1, G2, node_match=None, edge_match=None): """Returns True if the graphs G1 and G2 are isomorphic and False otherwise. Parameters ---------- G1, G2: graphs The two graphs G1 and G2 must be the same type. node_match : callable A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. If node_match is not specified then node attributes are not considered. The function will be called like node_match(G1.nodes[n1], G2.nodes[n2]). That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. edge_match : callable A function that returns True if the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. If edge_match is not specified then edge attributes are not considered. The function will be called like edge_match(G1[u1][v1], G2[u2][v2]). That is, the function will receive the edge attribute dictionaries of the edges under consideration. Notes ----- Uses the vf2 algorithm [1]_. Examples -------- >>> import networkx.algorithms.isomorphism as iso For digraphs G1 and G2, using 'weight' edge attribute (default: 1) >>> G1 = nx.DiGraph() >>> G2 = nx.DiGraph() >>> nx.add_path(G1, [1, 2, 3, 4], weight=1) >>> nx.add_path(G2, [10, 20, 30, 40], weight=2) >>> em = iso.numerical_edge_match("weight", 1) >>> nx.is_isomorphic(G1, G2) # no weights considered True >>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights False For multidigraphs G1 and G2, using 'fill' node attribute (default: '') >>> G1 = nx.MultiDiGraph() >>> G2 = nx.MultiDiGraph() >>> G1.add_nodes_from([1, 2, 3], fill="red") >>> G2.add_nodes_from([10, 20, 30, 40], fill="red") >>> nx.add_path(G1, [1, 2, 3, 4], weight=3, linewidth=2.5) >>> nx.add_path(G2, [10, 20, 30, 40], weight=3) >>> nm = iso.categorical_node_match("fill", "red") >>> nx.is_isomorphic(G1, G2, node_match=nm) True For multidigraphs G1 and G2, using 'weight' edge attribute (default: 7) >>> G1.add_edge(1, 2, weight=7) 1 >>> G2.add_edge(10, 20) 1 >>> em = iso.numerical_multiedge_match("weight", 7, rtol=1e-6) >>> nx.is_isomorphic(G1, G2, edge_match=em) True For multigraphs G1 and G2, using 'weight' and 'linewidth' edge attributes with default values 7 and 2.5. Also using 'fill' node attribute with default value 'red'. >>> em = iso.numerical_multiedge_match(["weight", "linewidth"], [7, 2.5]) >>> nm = iso.categorical_node_match("fill", "red") >>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm) True See Also -------- numerical_node_match, numerical_edge_match, numerical_multiedge_match categorical_node_match, categorical_edge_match, categorical_multiedge_match References ---------- .. [1] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. https://www.researchgate.net/publication/200034365_An_Improved_Algorithm_for_Matching_Large_Graphs """ if G1.is_directed() and G2.is_directed(): GM = nx.algorithms.isomorphism.DiGraphMatcher elif (not G1.is_directed()) and (not G2.is_directed()): GM = nx.algorithms.isomorphism.GraphMatcher else: raise NetworkXError("Graphs G1 and G2 are not of the same type.") gm = GM(G1, G2, node_match=node_match, edge_match=edge_match) return gm.is_isomorphic()