complete_multipartite_graph#

complete_multipartite_graph(*subset_sizes)[source]#

Returns the complete multipartite graph with the specified subset sizes.

(Source code, png)

../../_images/networkx-generators-classic-complete_multipartite_graph-1.png
Parameters:
subset_sizestuple of integers or tuple of node iterables

The arguments can either all be integer number of nodes or they can all be iterables of nodes. If integers, they represent the number of nodes in each subset of the multipartite graph. If iterables, each is used to create the nodes for that subset. The length of subset_sizes is the number of subsets.

Returns:
GNetworkX Graph

Returns the complete multipartite graph with the specified subsets.

For each node, the node attribute ‘subset’ is an integer indicating which subset contains the node.

See also

complete_bipartite_graph

Notes

This function generalizes several other graph builder functions.

  • If no subset sizes are given, this returns the null graph.

  • If a single subset size n is given, this returns the empty graph on n nodes.

  • If two subset sizes m and n are given, this returns the complete bipartite graph on m + n nodes.

  • If subset sizes 1 and n are given, this returns the star graph on n + 1 nodes.

Examples

Creating a complete tripartite graph, with subsets of one, two, and three nodes, respectively.

>>> G = nx.complete_multipartite_graph(1, 2, 3)
>>> [G.nodes[u]["subset"] for u in G]
[0, 1, 1, 2, 2, 2]
>>> list(G.edges(0))
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
>>> list(G.edges(2))
[(2, 0), (2, 3), (2, 4), (2, 5)]
>>> list(G.edges(4))
[(4, 0), (4, 1), (4, 2)]
>>> G = nx.complete_multipartite_graph("a", "bc", "def")
>>> [G.nodes[u]["subset"] for u in sorted(G)]
[0, 1, 1, 2, 2, 2]

Additional backends implement this function

cugraph : GPU-accelerated backend.