is_graphical#
- is_graphical(sequence, method='eg')[source]#
Returns True if sequence is a valid degree sequence.
A degree sequence is valid if some graph can realize it.
- Parameters:
- sequencelist or iterable container
A sequence of integer node degrees
- method“eg” | “hh” (default: ‘eg’)
The method used to validate the degree sequence. “eg” corresponds to the Erdős-Gallai algorithm [EG1960], [choudum1986], and “hh” to the Havel-Hakimi algorithm [havel1955], [hakimi1962], [CL1996].
- Returns:
- validbool
True if the sequence is a valid degree sequence and False if not.
References
[EG1960]Erdős and Gallai, Mat. Lapok 11 264, 1960.
[choudum1986]S.A. Choudum. “A simple proof of the Erdős-Gallai theorem on graph sequences.” Bulletin of the Australian Mathematical Society, 33, pp 67-70, 1986. https://doi.org/10.1017/S0004972700002872
[havel1955]Havel, V. “A Remark on the Existence of Finite Graphs” Casopis Pest. Mat. 80, 477-480, 1955.
[hakimi1962]Hakimi, S. “On the Realizability of a Set of Integers as Degrees of the Vertices of a Graph.” SIAM J. Appl. Math. 10, 496-506, 1962.
[CL1996]G. Chartrand and L. Lesniak, “Graphs and Digraphs”, Chapman and Hall/CRC, 1996.
Examples
>>> G = nx.path_graph(4) >>> sequence = (d for n, d in G.degree()) >>> nx.is_graphical(sequence) True
To test a non-graphical sequence: >>> sequence_list = [d for n, d in G.degree()] >>> sequence_list[-1] += 1 >>> nx.is_graphical(sequence_list) False