adjacency_matrix#
- adjacency_matrix(G, nodelist=None, dtype=None, weight='weight')[source]#
Returns adjacency matrix of
G
.- Parameters:
- Ggraph
A NetworkX graph
- nodelistlist, optional
The rows and columns are ordered according to the nodes in
nodelist
. Ifnodelist=None
(the default), then the ordering is produced byG.nodes()
.- dtypeNumPy data-type, optional
The desired data-type for the array. If
None
, then the NumPy default is used.- weightstring or None, optional (default=’weight’)
The edge data key used to provide each value in the matrix. If None, then each edge has weight 1.
- Returns:
- ASciPy sparse array
Adjacency matrix representation of G.
See also
to_numpy_array
to_scipy_sparse_array
to_dict_of_dicts
adjacency_spectrum
Notes
For directed graphs, entry
i, j
corresponds to an edge fromi
toj
.If you want a pure Python adjacency matrix representation try
to_dict_of_dicts()
which will return a dictionary-of-dictionaries format that can be addressed as a sparse matrix.For multigraphs with parallel edges the weights are summed. See
networkx.convert_matrix.to_numpy_array()
for other options.The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the edge weight attribute (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting SciPy sparse array can be modified as follows:
>>> G = nx.Graph([(1, 1)]) >>> A = nx.adjacency_matrix(G) >>> A.toarray() array([[1]]) >>> A.setdiag(A.diagonal() * 2) >>> A.toarray() array([[2]])