Note
Click here to download the full example code
Expected Degree Sequence¶
Random graph from given degree sequence.
Out:
Degree histogram
degree (#nodes) ****
0 ( 0)
1 ( 0)
2 ( 0)
3 ( 0)
4 ( 0)
5 ( 0)
6 ( 0)
7 ( 0)
8 ( 0)
9 ( 0)
10 ( 0)
11 ( 0)
12 ( 0)
13 ( 0)
14 ( 0)
15 ( 0)
16 ( 0)
17 ( 0)
18 ( 0)
19 ( 0)
20 ( 0)
21 ( 0)
22 ( 0)
23 ( 0)
24 ( 0)
25 ( 0)
26 ( 0)
27 ( 0)
28 ( 0)
29 ( 0)
30 ( 0)
31 ( 0)
32 ( 0)
33 ( 0)
34 ( 0)
35 ( 1) *
36 ( 5) *****
37 ( 7) *******
38 ( 3) ***
39 ( 6) ******
40 ( 5) *****
41 (17) *****************
42 (18) ******************
43 (30) ******************************
44 (21) *********************
45 (24) ************************
46 (22) **********************
47 (20) ********************
48 (35) ***********************************
49 (36) ************************************
50 (28) ****************************
51 (22) **********************
52 (22) **********************
53 (19) *******************
54 (34) **********************************
55 (18) ******************
56 (22) **********************
57 (15) ***************
58 (19) *******************
59 (12) ************
60 ( 9) *********
61 ( 8) ********
62 ( 9) *********
63 ( 2) **
64 ( 4) ****
65 ( 4) ****
66 ( 0)
67 ( 1) *
68 ( 1) *
69 ( 0)
70 ( 0)
71 ( 0)
72 ( 1) *
import networkx as nx
# make a random graph of 500 nodes with expected degrees of 50
n = 500 # n nodes
p = 0.1
w = [p * n for i in range(n)] # w = p*n for all nodes
G = nx.expected_degree_graph(w) # configuration model
print("Degree histogram")
print("degree (#nodes) ****")
dh = nx.degree_histogram(G)
for i, d in enumerate(dh):
print(f"{i:2} ({d:2}) {'*'*d}")
Total running time of the script: ( 0 minutes 0.035 seconds)