Source code for networkx.algorithms.node_classification

""" This module provides the functions for node classification problem.

The functions in this module are not imported
into the top level `networkx` namespace.
You can access these functions by importing
the `networkx.algorithms.node_classification` modules,
then accessing the functions as attributes of `node_classification`.
For example:

  >>> from networkx.algorithms import node_classification
  >>> G = nx.path_graph(4)
  >>> G.edges()
  EdgeView([(0, 1), (1, 2), (2, 3)])
  >>> G.nodes[0]["label"] = "A"
  >>> G.nodes[3]["label"] = "B"
  >>> node_classification.harmonic_function(G)
  ['A', 'A', 'B', 'B']

References
----------
Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August).
Semi-supervised learning using gaussian fields and harmonic functions.
In ICML (Vol. 3, pp. 912-919).
"""
import networkx as nx

__all__ = ["harmonic_function", "local_and_global_consistency"]


[docs] @nx.utils.not_implemented_for("directed") @nx._dispatchable(node_attrs="label_name") def harmonic_function(G, max_iter=30, label_name="label"): """Node classification by Harmonic function Function for computing Harmonic function algorithm by Zhu et al. Parameters ---------- G : NetworkX Graph max_iter : int maximum number of iterations allowed label_name : string name of target labels to predict Returns ------- predicted : list List of length ``len(G)`` with the predicted labels for each node. Raises ------ NetworkXError If no nodes in `G` have attribute `label_name`. Examples -------- >>> from networkx.algorithms import node_classification >>> G = nx.path_graph(4) >>> G.nodes[0]["label"] = "A" >>> G.nodes[3]["label"] = "B" >>> G.nodes(data=True) NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}}) >>> G.edges() EdgeView([(0, 1), (1, 2), (2, 3)]) >>> predicted = node_classification.harmonic_function(G) >>> predicted ['A', 'A', 'B', 'B'] References ---------- Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August). Semi-supervised learning using gaussian fields and harmonic functions. In ICML (Vol. 3, pp. 912-919). """ import numpy as np import scipy as sp X = nx.to_scipy_sparse_array(G) # adjacency matrix labels, label_dict = _get_label_info(G, label_name) if labels.shape[0] == 0: raise nx.NetworkXError( f"No node on the input graph is labeled by '{label_name}'." ) n_samples = X.shape[0] n_classes = label_dict.shape[0] F = np.zeros((n_samples, n_classes)) # Build propagation matrix degrees = X.sum(axis=0) degrees[degrees == 0] = 1 # Avoid division by 0 # TODO: csr_array D = sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0)) P = (D @ X).tolil() P[labels[:, 0]] = 0 # labels[:, 0] indicates IDs of labeled nodes # Build base matrix B = np.zeros((n_samples, n_classes)) B[labels[:, 0], labels[:, 1]] = 1 for _ in range(max_iter): F = (P @ F) + B return label_dict[np.argmax(F, axis=1)].tolist()
[docs] @nx.utils.not_implemented_for("directed") @nx._dispatchable(node_attrs="label_name") def local_and_global_consistency(G, alpha=0.99, max_iter=30, label_name="label"): """Node classification by Local and Global Consistency Function for computing Local and global consistency algorithm by Zhou et al. Parameters ---------- G : NetworkX Graph alpha : float Clamping factor max_iter : int Maximum number of iterations allowed label_name : string Name of target labels to predict Returns ------- predicted : list List of length ``len(G)`` with the predicted labels for each node. Raises ------ NetworkXError If no nodes in `G` have attribute `label_name`. Examples -------- >>> from networkx.algorithms import node_classification >>> G = nx.path_graph(4) >>> G.nodes[0]["label"] = "A" >>> G.nodes[3]["label"] = "B" >>> G.nodes(data=True) NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}}) >>> G.edges() EdgeView([(0, 1), (1, 2), (2, 3)]) >>> predicted = node_classification.local_and_global_consistency(G) >>> predicted ['A', 'A', 'B', 'B'] References ---------- Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with local and global consistency. Advances in neural information processing systems, 16(16), 321-328. """ import numpy as np import scipy as sp X = nx.to_scipy_sparse_array(G) # adjacency matrix labels, label_dict = _get_label_info(G, label_name) if labels.shape[0] == 0: raise nx.NetworkXError( f"No node on the input graph is labeled by '{label_name}'." ) n_samples = X.shape[0] n_classes = label_dict.shape[0] F = np.zeros((n_samples, n_classes)) # Build propagation matrix degrees = X.sum(axis=0) degrees[degrees == 0] = 1 # Avoid division by 0 # TODO: csr_array D2 = np.sqrt(sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0))) P = alpha * ((D2 @ X) @ D2) # Build base matrix B = np.zeros((n_samples, n_classes)) B[labels[:, 0], labels[:, 1]] = 1 - alpha for _ in range(max_iter): F = (P @ F) + B return label_dict[np.argmax(F, axis=1)].tolist()
def _get_label_info(G, label_name): """Get and return information of labels from the input graph Parameters ---------- G : Network X graph label_name : string Name of the target label Returns ------- labels : numpy array, shape = [n_labeled_samples, 2] Array of pairs of labeled node ID and label ID label_dict : numpy array, shape = [n_classes] Array of labels i-th element contains the label corresponding label ID `i` """ import numpy as np labels = [] label_to_id = {} lid = 0 for i, n in enumerate(G.nodes(data=True)): if label_name in n[1]: label = n[1][label_name] if label not in label_to_id: label_to_id[label] = lid lid += 1 labels.append([i, label_to_id[label]]) labels = np.array(labels) label_dict = np.array( [label for label, _ in sorted(label_to_id.items(), key=lambda x: x[1])] ) return (labels, label_dict)