"""
Miscellaneous Helpers for NetworkX.
These are not imported into the base networkx namespace but
can be accessed, for example, as
>>> import networkx
>>> networkx.utils.make_list_of_ints({1, 2, 3})
[1, 2, 3]
>>> networkx.utils.arbitrary_element({5, 1, 7}) # doctest: +SKIP
1
"""
import sys
import uuid
import warnings
from collections import defaultdict, deque
from collections.abc import Iterable, Iterator, Sized
from itertools import chain, tee
import networkx as nx
__all__ = [
"is_string_like",
"iterable",
"empty_generator",
"flatten",
"make_list_of_ints",
"is_list_of_ints",
"make_str",
"generate_unique_node",
"default_opener",
"dict_to_numpy_array",
"dict_to_numpy_array1",
"dict_to_numpy_array2",
"is_iterator",
"arbitrary_element",
"consume",
"pairwise",
"groups",
"to_tuple",
"create_random_state",
"create_py_random_state",
"PythonRandomInterface",
"nodes_equal",
"edges_equal",
"graphs_equal",
]
# some cookbook stuff
# used in deciding whether something is a bunch of nodes, edges, etc.
# see G.add_nodes and others in Graph Class in networkx/base.py
[docs]def is_string_like(obj): # from John Hunter, types-free version
"""Check if obj is string.
.. deprecated:: 2.6
This is deprecated and will be removed in NetworkX v3.0.
"""
msg = (
"is_string_like is deprecated and will be removed in 3.0."
"Use isinstance(obj, str) instead."
)
warnings.warn(msg, DeprecationWarning)
return isinstance(obj, str)
[docs]def iterable(obj):
"""Return True if obj is iterable with a well-defined len().
.. deprecated:: 2.6
This is deprecated and will be removed in NetworkX v3.0.
"""
msg = (
"iterable is deprecated and will be removed in 3.0."
"Use isinstance(obj, (collections.abc.Iterable, collections.abc.Sized)) instead."
)
warnings.warn(msg, DeprecationWarning)
if hasattr(obj, "__iter__"):
return True
try:
len(obj)
except:
return False
return True
def empty_generator():
"""Return a generator with no members.
.. deprecated:: 2.6
"""
warnings.warn(
"empty_generator is deprecated and will be removed in v3.0.", DeprecationWarning
)
return (i for i in ())
[docs]def flatten(obj, result=None):
"""Return flattened version of (possibly nested) iterable object."""
if not isinstance(obj, (Iterable, Sized)) or isinstance(obj, str):
return obj
if result is None:
result = []
for item in obj:
if not isinstance(item, (Iterable, Sized)) or isinstance(item, str):
result.append(item)
else:
flatten(item, result)
return tuple(result)
[docs]def make_list_of_ints(sequence):
"""Return list of ints from sequence of integral numbers.
All elements of the sequence must satisfy int(element) == element
or a ValueError is raised. Sequence is iterated through once.
If sequence is a list, the non-int values are replaced with ints.
So, no new list is created
"""
if not isinstance(sequence, list):
result = []
for i in sequence:
errmsg = f"sequence is not all integers: {i}"
try:
ii = int(i)
except ValueError:
raise nx.NetworkXError(errmsg) from None
if ii != i:
raise nx.NetworkXError(errmsg)
result.append(ii)
return result
# original sequence is a list... in-place conversion to ints
for indx, i in enumerate(sequence):
errmsg = f"sequence is not all integers: {i}"
if isinstance(i, int):
continue
try:
ii = int(i)
except ValueError:
raise nx.NetworkXError(errmsg) from None
if ii != i:
raise nx.NetworkXError(errmsg)
sequence[indx] = ii
return sequence
def is_list_of_ints(intlist):
"""Return True if list is a list of ints.
.. deprecated:: 2.6
This is deprecated and will be removed in NetworkX v3.0.
"""
msg = (
"is_list_of_ints is deprecated and will be removed in 3.0."
"See also: ``networkx.utils.make_list_of_ints.``"
)
warnings.warn(msg, DeprecationWarning, stacklevel=2)
if not isinstance(intlist, list):
return False
for i in intlist:
if not isinstance(i, int):
return False
return True
[docs]def make_str(x):
"""Returns the string representation of t.
.. deprecated:: 2.6
This is deprecated and will be removed in NetworkX v3.0.
"""
msg = "make_str is deprecated and will be removed in 3.0. Use str instead."
warnings.warn(msg, DeprecationWarning)
return str(x)
[docs]def generate_unique_node():
"""Generate a unique node label.
.. deprecated:: 2.6
This is deprecated and will be removed in NetworkX v3.0.
"""
msg = "generate_unique_node is deprecated and will be removed in 3.0. Use uuid.uuid4 instead."
warnings.warn(msg, DeprecationWarning)
return str(uuid.uuid4())
[docs]def default_opener(filename):
"""Opens `filename` using system's default program.
.. deprecated:: 2.6
default_opener is deprecated and will be removed in version 3.0.
Consider an image processing library to open images, such as Pillow::
from PIL import Image
Image.open(filename).show()
Parameters
----------
filename : str
The path of the file to be opened.
"""
warnings.warn(
"default_opener is deprecated and will be removed in version 3.0. ",
DeprecationWarning,
)
from subprocess import call
cmds = {
"darwin": ["open"],
"linux": ["xdg-open"],
"linux2": ["xdg-open"],
"win32": ["cmd.exe", "/C", "start", ""],
}
cmd = cmds[sys.platform] + [filename]
call(cmd)
def dict_to_numpy_array(d, mapping=None):
"""Convert a dictionary of dictionaries to a numpy array
with optional mapping."""
try:
return _dict_to_numpy_array2(d, mapping)
except (AttributeError, TypeError):
# AttributeError is when no mapping was provided and v.keys() fails.
# TypeError is when a mapping was provided and d[k1][k2] fails.
return _dict_to_numpy_array1(d, mapping)
def dict_to_numpy_array2(d, mapping=None):
"""Convert a dict of dicts to a 2d numpy array with optional mapping.
.. deprecated:: 2.8
dict_to_numpy_array2 is deprecated and will be removed in networkx 3.0.
Use `dict_to_numpy_array` instead.
"""
msg = (
"dict_to_numpy_array2 is deprecated and will be removed in networkx 3.0.\n"
"Use dict_to_numpy_array instead."
)
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return _dict_to_numpy_array2(d, mapping)
def _dict_to_numpy_array2(d, mapping=None):
"""Convert a dictionary of dictionaries to a 2d numpy array
with optional mapping.
"""
import numpy as np
if mapping is None:
s = set(d.keys())
for k, v in d.items():
s.update(v.keys())
mapping = dict(zip(s, range(len(s))))
n = len(mapping)
a = np.zeros((n, n))
for k1, i in mapping.items():
for k2, j in mapping.items():
try:
a[i, j] = d[k1][k2]
except KeyError:
pass
return a
def dict_to_numpy_array1(d, mapping=None):
"""Convert a dict of numbers to a 1d numpy array with optional mapping.
.. deprecated:: 2.8
dict_to_numpy_array1 is deprecated and will be removed in networkx 3.0.
Use dict_to_numpy_array instead.
"""
msg = (
"dict_to_numpy_array1 is deprecated and will be removed in networkx 3.0.\n"
"Use dict_to_numpy_array instead."
)
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return _dict_to_numpy_array1(d, mapping)
def _dict_to_numpy_array1(d, mapping=None):
"""Convert a dictionary of numbers to a 1d numpy array with optional mapping."""
import numpy as np
if mapping is None:
s = set(d.keys())
mapping = dict(zip(s, range(len(s))))
n = len(mapping)
a = np.zeros(n)
for k1, i in mapping.items():
i = mapping[k1]
a[i] = d[k1]
return a
def is_iterator(obj):
"""Returns True if and only if the given object is an iterator object.
.. deprecated:: 2.6.0
Deprecated in favor of ``isinstance(obj, collections.abc.Iterator)``
"""
msg = (
"is_iterator is deprecated and will be removed in version 3.0. "
"Use ``isinstance(obj, collections.abc.Iterator)`` instead."
)
warnings.warn(msg, DeprecationWarning, stacklevel=2)
has_next_attr = hasattr(obj, "__next__") or hasattr(obj, "next")
return iter(obj) is obj and has_next_attr
[docs]def arbitrary_element(iterable):
"""Returns an arbitrary element of `iterable` without removing it.
This is most useful for "peeking" at an arbitrary element of a set,
but can be used for any list, dictionary, etc., as well.
Parameters
----------
iterable : `abc.collections.Iterable` instance
Any object that implements ``__iter__``, e.g. set, dict, list, tuple,
etc.
Returns
-------
The object that results from ``next(iter(iterable))``
Raises
------
ValueError
If `iterable` is an iterator (because the current implementation of
this function would consume an element from the iterator).
Examples
--------
Arbitrary elements from common Iterable objects:
>>> nx.utils.arbitrary_element([1, 2, 3]) # list
1
>>> nx.utils.arbitrary_element((1, 2, 3)) # tuple
1
>>> nx.utils.arbitrary_element({1, 2, 3}) # set
1
>>> d = {k: v for k, v in zip([1, 2, 3], [3, 2, 1])}
>>> nx.utils.arbitrary_element(d) # dict_keys
1
>>> nx.utils.arbitrary_element(d.values()) # dict values
3
`str` is also an Iterable:
>>> nx.utils.arbitrary_element("hello")
'h'
:exc:`ValueError` is raised if `iterable` is an iterator:
>>> iterator = iter([1, 2, 3]) # Iterator, *not* Iterable
>>> nx.utils.arbitrary_element(iterator)
Traceback (most recent call last):
...
ValueError: cannot return an arbitrary item from an iterator
Notes
-----
This function does not return a *random* element. If `iterable` is
ordered, sequential calls will return the same value::
>>> l = [1, 2, 3]
>>> nx.utils.arbitrary_element(l)
1
>>> nx.utils.arbitrary_element(l)
1
"""
if isinstance(iterable, Iterator):
raise ValueError("cannot return an arbitrary item from an iterator")
# Another possible implementation is ``for x in iterable: return x``.
return next(iter(iterable))
# Recipe from the itertools documentation.
def consume(iterator):
"""Consume the iterator entirely.
.. deprecated:: 2.6
This is deprecated and will be removed in NetworkX v3.0.
"""
# Feed the entire iterator into a zero-length deque.
msg = (
"consume is deprecated and will be removed in version 3.0. "
"Use ``collections.deque(iterator, maxlen=0)`` instead."
)
warnings.warn(msg, DeprecationWarning, stacklevel=2)
deque(iterator, maxlen=0)
# Recipe from the itertools documentation.
[docs]def pairwise(iterable, cyclic=False):
"s -> (s0, s1), (s1, s2), (s2, s3), ..."
a, b = tee(iterable)
first = next(b, None)
if cyclic is True:
return zip(a, chain(b, (first,)))
return zip(a, b)
[docs]def groups(many_to_one):
"""Converts a many-to-one mapping into a one-to-many mapping.
`many_to_one` must be a dictionary whose keys and values are all
:term:`hashable`.
The return value is a dictionary mapping values from `many_to_one`
to sets of keys from `many_to_one` that have that value.
Examples
--------
>>> from networkx.utils import groups
>>> many_to_one = {"a": 1, "b": 1, "c": 2, "d": 3, "e": 3}
>>> groups(many_to_one) # doctest: +SKIP
{1: {'a', 'b'}, 2: {'c'}, 3: {'e', 'd'}}
"""
one_to_many = defaultdict(set)
for v, k in many_to_one.items():
one_to_many[k].add(v)
return dict(one_to_many)
def to_tuple(x):
"""Converts lists to tuples.
.. deprecated:: 2.8
to_tuple is deprecated and will be removed in NetworkX 3.0.
Examples
--------
>>> from networkx.utils import to_tuple
>>> a_list = [1, 2, [1, 4]]
>>> to_tuple(a_list)
(1, 2, (1, 4))
"""
warnings.warn(
"to_tuple is deprecated and will be removed in NetworkX 3.0.",
DeprecationWarning,
stacklevel=2,
)
if not isinstance(x, (tuple, list)):
return x
return tuple(map(to_tuple, x))
[docs]def create_random_state(random_state=None):
"""Returns a numpy.random.RandomState or numpy.random.Generator instance
depending on input.
Parameters
----------
random_state : int or NumPy RandomState or Generator instance, optional (default=None)
If int, return a numpy.random.RandomState instance set with seed=int.
if `numpy.random.RandomState` instance, return it.
if `numpy.random.Generator` instance, return it.
if None or numpy.random, return the global random number generator used
by numpy.random.
"""
import numpy as np
if random_state is None or random_state is np.random:
return np.random.mtrand._rand
if isinstance(random_state, np.random.RandomState):
return random_state
if isinstance(random_state, int):
return np.random.RandomState(random_state)
if isinstance(random_state, np.random.Generator):
return random_state
msg = (
f"{random_state} cannot be used to create a numpy.random.RandomState or\n"
"numpy.random.Generator instance"
)
raise ValueError(msg)
class PythonRandomInterface:
def __init__(self, rng=None):
try:
import numpy as np
except ImportError:
msg = "numpy not found, only random.random available."
warnings.warn(msg, ImportWarning)
if rng is None:
self._rng = np.random.mtrand._rand
else:
self._rng = rng
def random(self):
return self._rng.random()
def uniform(self, a, b):
return a + (b - a) * self._rng.random()
def randrange(self, a, b=None):
import numpy as np
if isinstance(self._rng, np.random.Generator):
return self._rng.integers(a, b)
return self._rng.randint(a, b)
# NOTE: the numpy implementations of `choice` don't support strings, so
# this cannot be replaced with self._rng.choice
def choice(self, seq):
import numpy as np
if isinstance(self._rng, np.random.Generator):
idx = self._rng.integers(0, len(seq))
else:
idx = self._rng.randint(0, len(seq))
return seq[idx]
def gauss(self, mu, sigma):
return self._rng.normal(mu, sigma)
def shuffle(self, seq):
return self._rng.shuffle(seq)
# Some methods don't match API for numpy RandomState.
# Commented out versions are not used by NetworkX
def sample(self, seq, k):
return self._rng.choice(list(seq), size=(k,), replace=False)
def randint(self, a, b):
import numpy as np
if isinstance(self._rng, np.random.Generator):
return self._rng.integers(a, b + 1)
return self._rng.randint(a, b + 1)
# exponential as expovariate with 1/argument,
def expovariate(self, scale):
return self._rng.exponential(1 / scale)
# pareto as paretovariate with 1/argument,
def paretovariate(self, shape):
return self._rng.pareto(shape)
# weibull as weibullvariate multiplied by beta,
# def weibullvariate(self, alpha, beta):
# return self._rng.weibull(alpha) * beta
#
# def triangular(self, low, high, mode):
# return self._rng.triangular(low, mode, high)
#
# def choices(self, seq, weights=None, cum_weights=None, k=1):
# return self._rng.choice(seq
def create_py_random_state(random_state=None):
"""Returns a random.Random instance depending on input.
Parameters
----------
random_state : int or random number generator or None (default=None)
If int, return a random.Random instance set with seed=int.
if random.Random instance, return it.
if None or the `random` package, return the global random number
generator used by `random`.
if np.random package, return the global numpy random number
generator wrapped in a PythonRandomInterface class.
if np.random.RandomState or np.random.Generator instance, return it
wrapped in PythonRandomInterface
if a PythonRandomInterface instance, return it
"""
import random
try:
import numpy as np
if random_state is np.random:
return PythonRandomInterface(np.random.mtrand._rand)
if isinstance(random_state, (np.random.RandomState, np.random.Generator)):
return PythonRandomInterface(random_state)
if isinstance(random_state, PythonRandomInterface):
return random_state
except ImportError:
pass
if random_state is None or random_state is random:
return random._inst
if isinstance(random_state, random.Random):
return random_state
if isinstance(random_state, int):
return random.Random(random_state)
msg = f"{random_state} cannot be used to generate a random.Random instance"
raise ValueError(msg)
[docs]def nodes_equal(nodes1, nodes2):
"""Check if nodes are equal.
Equality here means equal as Python objects.
Node data must match if included.
The order of nodes is not relevant.
Parameters
----------
nodes1, nodes2 : iterables of nodes, or (node, datadict) tuples
Returns
-------
bool
True if nodes are equal, False otherwise.
"""
nlist1 = list(nodes1)
nlist2 = list(nodes2)
try:
d1 = dict(nlist1)
d2 = dict(nlist2)
except (ValueError, TypeError):
d1 = dict.fromkeys(nlist1)
d2 = dict.fromkeys(nlist2)
return d1 == d2
[docs]def edges_equal(edges1, edges2):
"""Check if edges are equal.
Equality here means equal as Python objects.
Edge data must match if included.
The order of the edges is not relevant.
Parameters
----------
edges1, edges2 : iterables of with u, v nodes as
edge tuples (u, v), or
edge tuples with data dicts (u, v, d), or
edge tuples with keys and data dicts (u, v, k, d)
Returns
-------
bool
True if edges are equal, False otherwise.
"""
from collections import defaultdict
d1 = defaultdict(dict)
d2 = defaultdict(dict)
c1 = 0
for c1, e in enumerate(edges1):
u, v = e[0], e[1]
data = [e[2:]]
if v in d1[u]:
data = d1[u][v] + data
d1[u][v] = data
d1[v][u] = data
c2 = 0
for c2, e in enumerate(edges2):
u, v = e[0], e[1]
data = [e[2:]]
if v in d2[u]:
data = d2[u][v] + data
d2[u][v] = data
d2[v][u] = data
if c1 != c2:
return False
# can check one direction because lengths are the same.
for n, nbrdict in d1.items():
for nbr, datalist in nbrdict.items():
if n not in d2:
return False
if nbr not in d2[n]:
return False
d2datalist = d2[n][nbr]
for data in datalist:
if datalist.count(data) != d2datalist.count(data):
return False
return True
[docs]def graphs_equal(graph1, graph2):
"""Check if graphs are equal.
Equality here means equal as Python objects (not isomorphism).
Node, edge and graph data must match.
Parameters
----------
graph1, graph2 : graph
Returns
-------
bool
True if graphs are equal, False otherwise.
"""
return (
graph1.adj == graph2.adj
and graph1.nodes == graph2.nodes
and graph1.graph == graph2.graph
)