Source code for networkx.algorithms.node_classification.lgc
"""Function for computing Local and global consistency algorithm by Zhou et al.
References
----------
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004).
Learning with local and global consistency.
Advances in neural information processing systems, 16(16), 321-328.
"""
import networkx as nx
from networkx.algorithms.node_classification.utils import _get_label_info
from networkx.utils.decorators import not_implemented_for
__all__ = ["local_and_global_consistency"]
[docs]@not_implemented_for("directed")
def local_and_global_consistency(G, alpha=0.99, max_iter=30, label_name="label"):
"""Node classification by Local and Global Consistency
Parameters
----------
G : NetworkX Graph
alpha : float
Clamping factor
max_iter : int
Maximum number of iterations allowed
label_name : string
Name of target labels to predict
Returns
-------
predicted : list
List of length ``len(G)`` with the predicted labels for each node.
Raises
------
NetworkXError
If no nodes in `G` have attribute `label_name`.
Examples
--------
>>> from networkx.algorithms import node_classification
>>> G = nx.path_graph(4)
>>> G.nodes[0]["label"] = "A"
>>> G.nodes[3]["label"] = "B"
>>> G.nodes(data=True)
NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}})
>>> G.edges()
EdgeView([(0, 1), (1, 2), (2, 3)])
>>> predicted = node_classification.local_and_global_consistency(G)
>>> predicted
['A', 'A', 'B', 'B']
References
----------
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004).
Learning with local and global consistency.
Advances in neural information processing systems, 16(16), 321-328.
"""
import numpy as np
import scipy as sp
import scipy.sparse # call as sp.sparse
X = nx.to_scipy_sparse_array(G) # adjacency matrix
labels, label_dict = _get_label_info(G, label_name)
if labels.shape[0] == 0:
raise nx.NetworkXError(
f"No node on the input graph is labeled by '{label_name}'."
)
n_samples = X.shape[0]
n_classes = label_dict.shape[0]
F = np.zeros((n_samples, n_classes))
# Build propagation matrix
degrees = X.sum(axis=0)
degrees[degrees == 0] = 1 # Avoid division by 0
# TODO: csr_array
D2 = np.sqrt(sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0)))
P = alpha * ((D2 @ X) @ D2)
# Build base matrix
B = np.zeros((n_samples, n_classes))
B[labels[:, 0], labels[:, 1]] = 1 - alpha
for _ in range(max_iter):
F = (P @ F) + B
return label_dict[np.argmax(F, axis=1)].tolist()