Source code for networkx.algorithms.node_classification.lgc

"""Function for computing Local and global consistency algorithm by Zhou et al.

References
----------
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004).
Learning with local and global consistency.
Advances in neural information processing systems, 16(16), 321-328.
"""
import networkx as nx
from networkx.algorithms.node_classification.utils import _get_label_info
from networkx.utils.decorators import not_implemented_for

__all__ = ["local_and_global_consistency"]


[docs]@not_implemented_for("directed") def local_and_global_consistency(G, alpha=0.99, max_iter=30, label_name="label"): """Node classification by Local and Global Consistency Parameters ---------- G : NetworkX Graph alpha : float Clamping factor max_iter : int Maximum number of iterations allowed label_name : string Name of target labels to predict Returns ------- predicted : list List of length ``len(G)`` with the predicted labels for each node. Raises ------ NetworkXError If no nodes in `G` have attribute `label_name`. Examples -------- >>> from networkx.algorithms import node_classification >>> G = nx.path_graph(4) >>> G.nodes[0]["label"] = "A" >>> G.nodes[3]["label"] = "B" >>> G.nodes(data=True) NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}}) >>> G.edges() EdgeView([(0, 1), (1, 2), (2, 3)]) >>> predicted = node_classification.local_and_global_consistency(G) >>> predicted ['A', 'A', 'B', 'B'] References ---------- Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with local and global consistency. Advances in neural information processing systems, 16(16), 321-328. """ import numpy as np import scipy as sp import scipy.sparse # call as sp.sparse X = nx.to_scipy_sparse_array(G) # adjacency matrix labels, label_dict = _get_label_info(G, label_name) if labels.shape[0] == 0: raise nx.NetworkXError( f"No node on the input graph is labeled by '{label_name}'." ) n_samples = X.shape[0] n_classes = label_dict.shape[0] F = np.zeros((n_samples, n_classes)) # Build propagation matrix degrees = X.sum(axis=0) degrees[degrees == 0] = 1 # Avoid division by 0 # TODO: csr_array D2 = np.sqrt(sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0))) P = alpha * ((D2 @ X) @ D2) # Build base matrix B = np.zeros((n_samples, n_classes)) B[labels[:, 0], labels[:, 1]] = 1 - alpha for _ in range(max_iter): F = (P @ F) + B return label_dict[np.argmax(F, axis=1)].tolist()