weighted_projected_graph¶
-
weighted_projected_graph
(B, nodes, ratio=False)[source]¶ Returns a weighted projection of B onto one of its node sets.
The weighted projected graph is the projection of the bipartite network B onto the specified nodes with weights representing the number of shared neighbors or the ratio between actual shared neighbors and possible shared neighbors if ratio=True [1]. The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph.
Parameters: - B (NetworkX graph) – The input graph should be bipartite.
- nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).
- ratio (Bool (default=False)) – If True, edge weight is the ratio between actual shared neighbors and possible shared neighbors. If False, edges weight is the number of shared neighbors.
Returns: Graph – A graph that is the projection onto the given nodes.
Return type: NetworkX graph
Examples
>>> from networkx.algorithms import bipartite >>> B = nx.path_graph(4) >>> G = bipartite.weighted_projected_graph(B, [1,3]) >>> print(G.nodes()) [1, 3] >>> print(G.edges(data=True)) [(1, 3, {'weight': 1})] >>> G = bipartite.weighted_projected_graph(B, [1,3], ratio=True) >>> print(G.edges(data=True)) [(1, 3, {'weight': 0.5})]
Notes
No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.
See also
is_bipartite()
,is_bipartite_node_set()
,sets()
,collaboration_weighted_projected_graph()
,overlap_weighted_projected_graph()
,generic_weighted_projected_graph()
,projected_graph()
References
[1] Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications.