Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

Source code for networkx.linalg.algebraicconnectivity

# -*- coding: utf-8 -*-
"""
Algebraic connectivity and Fiedler vectors of undirected graphs.
"""

__author__ = """ysitu <ysitu@users.noreply.github.com>"""
# Copyright (C) 2014 ysitu <ysitu@users.noreply.github.com>
# All rights reserved.
# BSD license.

from functools import partial
import networkx as nx
from networkx.utils import not_implemented_for
from networkx.utils import reverse_cuthill_mckee_ordering
from re import compile

try:
    from numpy import (array, asmatrix, asarray, dot, matrix, ndarray, ones,
                       reshape, sqrt, zeros)
    from numpy.linalg import norm, qr
    from numpy.random import normal
    from scipy.linalg import eigh, inv
    from scipy.sparse import csc_matrix, spdiags
    from scipy.sparse.linalg import eigsh, lobpcg
    __all__ = ['algebraic_connectivity', 'fiedler_vector', 'spectral_ordering']
except ImportError:
    __all__ = []

try:
    from scipy.linalg.blas import dasum, daxpy, ddot
except ImportError:

    if __all__:
        # Make sure the imports succeeded.

        # Use minimal replacements if BLAS is unavailable from SciPy.
        dasum = partial(norm, ord=1)
        ddot = dot

        def daxpy(x, y, a):
            y += a * x
            return y

_tracemin_method = compile('^tracemin(?:_(.*))?$')


class _PCGSolver(object):
    """Preconditioned conjugate gradient method.
    """

    def __init__(self, A, M):
        self._A = A
        self._M = M or (lambda x: x.copy())

    def solve(self, B, tol):
        B = asarray(B)
        X = ndarray(B.shape, order='F')
        for j in range(B.shape[1]):
            X[:, j] = self._solve(B[:, j], tol)
        return X

    def _solve(self, b, tol):
        A = self._A
        M = self._M
        tol *= dasum(b)
        # Initialize.
        x = zeros(b.shape)
        r = b.copy()
        z = M(r)
        rz = ddot(r, z)
        p = z.copy()
        # Iterate.
        while True:
            Ap = A(p)
            alpha = rz / ddot(p, Ap)
            x = daxpy(p, x, a=alpha)
            r = daxpy(Ap, r, a=-alpha)
            if dasum(r) < tol:
                return x
            z = M(r)
            beta = ddot(r, z)
            beta, rz = beta / rz, beta
            p = daxpy(p, z, a=beta)


class _CholeskySolver(object):
    """Cholesky factorization.
    """

    def __init__(self, A):
        if not self._cholesky:
            raise nx.NetworkXError('Cholesky solver unavailable.')
        self._chol = self._cholesky(A)

    def solve(self, B):
        return self._chol(B)

    try:
        from scikits.sparse.cholmod import cholesky
        _cholesky = cholesky
    except ImportError:
        _cholesky = None


class _LUSolver(object):
    """LU factorization.
    """

    def __init__(self, A):
        if not self._splu:
            raise nx.NetworkXError('LU solver unavailable.')
        self._LU = self._splu(A)

    def solve(self, B):
        B = asarray(B)
        X = ndarray(B.shape, order='F')
        for j in range(B.shape[1]):
            X[:, j] = self._LU.solve(B[:, j])
        return X

    try:
        from scipy.sparse.linalg import splu
        _splu = partial(splu, permc_spec='MMD_AT_PLUS_A', diag_pivot_thresh=0.,
                        options={'Equil': True, 'SymmetricMode': True})
    except ImportError:
        _splu = None


def _preprocess_graph(G, weight):
    """Compute edge weights and eliminate zero-weight edges.
    """
    if G.is_directed():
        H = nx.MultiGraph()
        H.add_nodes_from(G)
        H.add_weighted_edges_from(((u, v, e.get(weight, 1.))
                                   for u, v, e in G.edges_iter(data=True)
                                   if u != v), weight=weight)
        G = H
    if not G.is_multigraph():
        edges = ((u, v, abs(e.get(weight, 1.)))
                 for u, v, e in G.edges_iter(data=True) if u != v)
    else:
        edges = ((u, v, sum(abs(e.get(weight, 1.)) for e in G[u][v].values()))
                 for u, v in G.edges_iter() if u != v)
    H = nx.Graph()
    H.add_nodes_from(G)
    H.add_weighted_edges_from((u, v, e) for u, v, e in edges if e != 0)
    return H


def _rcm_estimate(G, nodelist):
    """Estimate the Fiedler vector using the reverse Cuthill-McKee ordering.
    """
    G = G.subgraph(nodelist)
    order = reverse_cuthill_mckee_ordering(G)
    n = len(nodelist)
    index = dict(zip(nodelist, range(n)))
    x = ndarray(n, dtype=float)
    for i, u in enumerate(order):
        x[index[u]] = i
    x -= (n - 1) / 2.
    return x


def _tracemin_fiedler(L, X, normalized, tol, method):
    """Compute the Fiedler vector of L using the TraceMIN-Fiedler algorithm.
    """
    n = X.shape[0]

    if normalized:
        # Form the normalized Laplacian matrix and determine the eigenvector of
        # its nullspace.
        e = sqrt(L.diagonal())
        D = spdiags(1. / e, [0], n, n, format='csr')
        L = D * L * D
        e *= 1. / norm(e, 2)

    if not normalized:
        def project(X):
            """Make X orthogonal to the nullspace of L.
            """
            X = asarray(X)
            for j in range(X.shape[1]):
                X[:, j] -= X[:, j].sum() / n
    else:
        def project(X):
            """Make X orthogonal to the nullspace of L.
            """
            X = asarray(X)
            for j in range(X.shape[1]):
                X[:, j] -= dot(X[:, j], e) * e


    if method is None:
        method = 'pcg'
    if method == 'pcg':
        # See comments below for the semantics of P and D.
        def P(x):
            x -= asarray(x * X * X.T)[0, :]
            if not normalized:
                x -= x.sum() / n
            else:
                x = daxpy(e, x, a=-ddot(x, e))
            return x
        solver = _PCGSolver(lambda x: P(L * P(x)), lambda x: D * x)
    elif method == 'chol' or method == 'lu':
        # Convert A to CSC to suppress SparseEfficiencyWarning.
        A = csc_matrix(L, dtype=float, copy=True)
        # Force A to be nonsingular. Since A is the Laplacian matrix of a
        # connected graph, its rank deficiency is one, and thus one diagonal
        # element needs to modified. Changing to infinity forces a zero in the
        # corresponding element in the solution.
        i = (A.indptr[1:] - A.indptr[:-1]).argmax()
        A[i, i] = float('inf')
        solver = (_CholeskySolver if method == 'chol' else _LUSolver)(A)
    else:
        raise nx.NetworkXError('unknown linear system solver.')

    # Initialize.
    Lnorm = abs(L).sum(axis=1).flatten().max()
    project(X)
    W = asmatrix(ndarray(X.shape, order='F'))

    while True:
        # Orthonormalize X.
        X = qr(X)[0]
        # Compute interation matrix H.
        W[:, :] = L * X
        H = X.T * W
        sigma, Y = eigh(H, overwrite_a=True)
        # Compute the Ritz vectors.
        X *= Y
        # Test for convergence exploiting the fact that L * X == W * Y.
        res = dasum(W * asmatrix(Y)[:, 0] - sigma[0] * X[:, 0]) / Lnorm
        if res < tol:
            break
        # Depending on the linear solver to be used, two mathematically
        # equivalent formulations are used.
        if method == 'pcg':
            # Compute X = X - (P * L * P) \ (P * L * X) where
            # P = I - [e X] * [e X]' is a projection onto the orthogonal
            # complement of [e X].
            W *= Y  # L * X == W * Y
            W -= (W.T * X * X.T).T
            project(W)
            # Compute the diagonal of P * L * P as a Jacobi preconditioner.
            D = L.diagonal()
            D += 2. * (asarray(X) * asarray(W)).sum(axis=1)
            D += (asarray(X) * asarray(X * (W.T * X))).sum(axis=1)
            D[D < tol * Lnorm] = 1.
            D = 1. / D
            # Since TraceMIN is globally convergent, the relative residual can
            # be loose.
            X -= solver.solve(W, 0.1)
        else:
            # Compute X = L \ X / (X' * (L \ X)). L \ X can have an arbitrary
            # projection on the nullspace of L, which will be eliminated.
            W[:, :] = solver.solve(X)
            project(W)
            X = (inv(W.T * X) * W.T).T  # Preserves Fortran storage order.

    return sigma, asarray(X)


def _get_fiedler_func(method):
    """Return a function that solves the Fiedler eigenvalue problem.
    """
    match = _tracemin_method.match(method)
    if match:
        method = match.group(1)
        def find_fiedler(L, x, normalized, tol):
            q = 2 if method == 'pcg' else min(4, L.shape[0] - 1)
            X = asmatrix(normal(size=(q, L.shape[0]))).T
            sigma, X = _tracemin_fiedler(L, X, normalized, tol, method)
            return sigma[0], X[:, 0]
    elif method == 'lanczos' or method == 'lobpcg':
        def find_fiedler(L, x, normalized, tol):
            L = csc_matrix(L, dtype=float)
            n = L.shape[0]
            if normalized:
                D = spdiags(1. / sqrt(L.diagonal()), [0], n, n, format='csc')
                L = D * L * D
            if method == 'lanczos' or n < 10:
                # Avoid LOBPCG when n < 10 due to
                # https://github.com/scipy/scipy/issues/3592
                # https://github.com/scipy/scipy/pull/3594
                sigma, X = eigsh(L, 2, which='SM', tol=tol,
                                 return_eigenvectors=True)
                return sigma[1], X[:, 1]
            else:
                X = asarray(asmatrix(x).T)
                M = spdiags(1. / L.diagonal(), [0], n, n)
                Y = ones(n)
                if normalized:
                    Y /= D.diagonal()
                sigma, X = lobpcg(L, X, M=M, Y=asmatrix(Y).T, tol=tol,
                                  maxiter=n, largest=False)
                return sigma[0], X[:, 0]
    else:
        raise nx.NetworkXError("unknown method '%s'." % method)

    return find_fiedler


@not_implemented_for('directed')
[docs]def algebraic_connectivity(G, weight='weight', normalized=False, tol=1e-8, method='tracemin'): """Return the algebraic connectivity of an undirected graph. The algebraic connectivity of a connected undirected graph is the second smallest eigenvalue of its Laplacian matrix. Parameters ---------- G : NetworkX graph An undirected graph. weight : object, optional The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None. normalized : bool, optional Whether the normalized Laplacian matrix is used. Default value: False. tol : float, optional Tolerance of relative residual in eigenvalue computation. Default value: 1e-8. method : string, optional Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'. The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used. =============== ======================================== Value Solver =============== ======================================== 'tracemin_pcg' Preconditioned conjugate gradient method 'tracemin_chol' Cholesky factorization 'tracemin_lu' LU factorization =============== ======================================== Returns ------- algebraic_connectivity : float Algebraic connectivity. Raises ------ NetworkXNotImplemented If G is directed. NetworkXError If G has less than two nodes. Notes ----- Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored. To use Cholesky factorization in the TraceMIN algorithm, the :samp:`scikits.sparse` package must be installed. See Also -------- laplacian_matrix """ if len(G) < 2: raise nx.NetworkXError('graph has less than two nodes.') G = _preprocess_graph(G, weight) if not nx.is_connected(G): return 0. L = nx.laplacian_matrix(G) if L.shape[0] == 2: return 2. * L[0, 0] if not normalized else 2. find_fiedler = _get_fiedler_func(method) x = None if method != 'lobpcg' else _rcm_estimate(G, G) return find_fiedler(L, x, normalized, tol)[0]
@not_implemented_for('directed')
[docs]def fiedler_vector(G, weight='weight', normalized=False, tol=1e-8, method='tracemin'): """Return the Fiedler vector of a connected undirected graph. The Fiedler vector of a connected undirected graph is the eigenvector corresponding to the second smallest eigenvalue of the Laplacian matrix of of the graph. Parameters ---------- G : NetworkX graph An undirected graph. weight : object, optional The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None. normalized : bool, optional Whether the normalized Laplacian matrix is used. Default value: False. tol : float, optional Tolerance of relative residual in eigenvalue computation. Default value: 1e-8. method : string, optional Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'. The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used. =============== ======================================== Value Solver =============== ======================================== 'tracemin_pcg' Preconditioned conjugate gradient method 'tracemin_chol' Cholesky factorization 'tracemin_lu' LU factorization =============== ======================================== Returns ------- fiedler_vector : NumPy array of floats. Fiedler vector. Raises ------ NetworkXNotImplemented If G is directed. NetworkXError If G has less than two nodes or is not connected. Notes ----- Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored. To use Cholesky factorization in the TraceMIN algorithm, the :samp:`scikits.sparse` package must be installed. See Also -------- laplacian_matrix """ if len(G) < 2: raise nx.NetworkXError('graph has less than two nodes.') G = _preprocess_graph(G, weight) if not nx.is_connected(G): raise nx.NetworkXError('graph is not connected.') if len(G) == 2: return array([1., -1.]) find_fiedler = _get_fiedler_func(method) L = nx.laplacian_matrix(G) x = None if method != 'lobpcg' else _rcm_estimate(G, G) return find_fiedler(L, x, normalized, tol)[1]
[docs]def spectral_ordering(G, weight='weight', normalized=False, tol=1e-8, method='tracemin'): """Compute the spectral_ordering of a graph. The spectral ordering of a graph is an ordering of its nodes where nodes in the same weakly connected components appear contiguous and ordered by their corresponding elements in the Fiedler vector of the component. Parameters ---------- G : NetworkX graph A graph. weight : object, optional The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None. normalized : bool, optional Whether the normalized Laplacian matrix is used. Default value: False. tol : float, optional Tolerance of relative residual in eigenvalue computation. Default value: 1e-8. method : string, optional Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'. The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used. =============== ======================================== Value Solver =============== ======================================== 'tracemin_pcg' Preconditioned conjugate gradient method 'tracemin_chol' Cholesky factorization 'tracemin_lu' LU factorization =============== ======================================== Returns ------- spectral_ordering : NumPy array of floats. Spectral ordering of nodes. Raises ------ NetworkXError If G is empty. Notes ----- Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored. To use Cholesky factorization in the TraceMIN algorithm, the :samp:`scikits.sparse` package must be installed. See Also -------- laplacian_matrix """ if len(G) == 0: raise nx.NetworkXError('graph is empty.') G = _preprocess_graph(G, weight) find_fiedler = _get_fiedler_func(method) order = [] for component in nx.connected_components(G): size = len(component) if size > 2: L = nx.laplacian_matrix(G, component) x = None if method != 'lobpcg' else _rcm_estimate(G, component) fiedler = find_fiedler(L, x, normalized, tol)[1] order.extend( u for x, c, u in sorted(zip(fiedler, range(size), component))) else: order.extend(component) return order # fixture for nose tests
def setup_module(module): from nose import SkipTest try: import numpy import scipy.sparse except ImportError: raise SkipTest('SciPy not available.')