Warning
This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.
Source code for networkx.generators.classic
"""
Generators for some classic graphs.
The typical graph generator is called as follows:
>>> G=nx.complete_graph(100)
returning the complete graph on n nodes labeled 0,..,99
as a simple graph. Except for empty_graph, all the generators
in this module return a Graph class (i.e. a simple, undirected graph).
"""
# Copyright (C) 2004-2015 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
import itertools
from networkx.algorithms.bipartite.generators import complete_bipartite_graph
from networkx.utils import accumulate
__author__ ="""Aric Hagberg (hagberg@lanl.gov)\nPieter Swart (swart@lanl.gov)"""
__all__ = [ 'balanced_tree',
'barbell_graph',
'complete_graph',
'complete_multipartite_graph',
'circular_ladder_graph',
'circulant_graph',
'cycle_graph',
'dorogovtsev_goltsev_mendes_graph',
'empty_graph',
'full_rary_tree',
'grid_graph',
'grid_2d_graph',
'hypercube_graph',
'ladder_graph',
'lollipop_graph',
'null_graph',
'path_graph',
'star_graph',
'trivial_graph',
'wheel_graph']
#-------------------------------------------------------------------
# Some Classic Graphs
#-------------------------------------------------------------------
import networkx as nx
from networkx.utils import is_list_of_ints, flatten
def _tree_edges(n,r):
# helper function for trees
# yields edges in rooted tree at 0 with n nodes and branching ratio r
nodes=iter(range(n))
parents=[next(nodes)] # stack of max length r
while parents:
source=parents.pop(0)
for i in range(r):
try:
target=next(nodes)
parents.append(target)
yield source,target
except StopIteration:
break
def full_rary_tree(r, n, create_using=None):
"""Creates a full r-ary tree of n vertices.
Sometimes called a k-ary, n-ary, or m-ary tree. "... all non-leaf
vertices have exactly r children and all levels are full except
for some rightmost position of the bottom level (if a leaf at the
bottom level is missing, then so are all of the leaves to its
right." [1]_
Parameters
----------
r : int
branching factor of the tree
n : int
Number of nodes in the tree
create_using : NetworkX graph type, optional
Use specified type to construct graph (default = networkx.Graph)
Returns
-------
G : networkx Graph
An r-ary tree with n nodes
References
----------
.. [1] An introduction to data structures and algorithms,
James Andrew Storer, Birkhauser Boston 2001, (page 225).
"""
G=nx.empty_graph(n,create_using)
G.add_edges_from(_tree_edges(n,r))
return G
[docs]def balanced_tree(r, h, create_using=None):
"""Return the perfectly balanced r-tree of height h.
Parameters
----------
r : int
Branching factor of the tree
h : int
Height of the tree
create_using : NetworkX graph type, optional
Use specified type to construct graph (default = networkx.Graph)
Returns
-------
G : networkx Graph
A tree with n nodes
Notes
-----
This is the rooted tree where all leaves are at distance h from
the root. The root has degree r and all other internal nodes have
degree r+1.
Node labels are the integers 0 (the root) up to number_of_nodes - 1.
Also refered to as a complete r-ary tree.
"""
# number of nodes is n=1+r+..+r^h
if r==1:
n=2
else:
n = int((1-r**(h+1))/(1-r)) # sum of geometric series r!=1
G=nx.empty_graph(n,create_using)
G.add_edges_from(_tree_edges(n,r))
return G
return nx.full_rary_tree(r,n,create_using)
[docs]def barbell_graph(m1,m2,create_using=None):
"""Return the Barbell Graph: two complete graphs connected by a path.
For m1 > 1 and m2 >= 0.
Two identical complete graphs K_{m1} form the left and right bells,
and are connected by a path P_{m2}.
The 2*m1+m2 nodes are numbered
0,...,m1-1 for the left barbell,
m1,...,m1+m2-1 for the path,
and m1+m2,...,2*m1+m2-1 for the right barbell.
The 3 subgraphs are joined via the edges (m1-1,m1) and (m1+m2-1,m1+m2).
If m2=0, this is merely two complete graphs joined together.
This graph is an extremal example in David Aldous
and Jim Fill's etext on Random Walks on Graphs.
"""
if create_using is not None and create_using.is_directed():
raise nx.NetworkXError("Directed Graph not supported")
if m1<2:
raise nx.NetworkXError(\
"Invalid graph description, m1 should be >=2")
if m2<0:
raise nx.NetworkXError(\
"Invalid graph description, m2 should be >=0")
# left barbell
G=complete_graph(m1,create_using)
G.name="barbell_graph(%d,%d)"%(m1,m2)
# connecting path
G.add_nodes_from([v for v in range(m1,m1+m2-1)])
if m2>1:
G.add_edges_from([(v,v+1) for v in range(m1,m1+m2-1)])
# right barbell
G.add_edges_from( (u,v) for u in range(m1+m2,2*m1+m2) for v in range(u+1,2*m1+m2))
# connect it up
G.add_edge(m1-1,m1)
if m2>0:
G.add_edge(m1+m2-1,m1+m2)
return G
[docs]def complete_graph(n,create_using=None):
""" Return the complete graph K_n with n nodes.
Node labels are the integers 0 to n-1.
"""
G=empty_graph(n,create_using)
G.name="complete_graph(%d)"%(n)
if n>1:
if G.is_directed():
edges=itertools.permutations(range(n),2)
else:
edges=itertools.combinations(range(n),2)
G.add_edges_from(edges)
return G
[docs]def circular_ladder_graph(n,create_using=None):
"""Return the circular ladder graph CL_n of length n.
CL_n consists of two concentric n-cycles in which
each of the n pairs of concentric nodes are joined by an edge.
Node labels are the integers 0 to n-1
"""
G=ladder_graph(n,create_using)
G.name="circular_ladder_graph(%d)"%n
G.add_edge(0,n-1)
G.add_edge(n,2*n-1)
return G
def circulant_graph(n, offsets, create_using=None):
"""Generates the circulant graph Ci_n(x_1, x_2, ..., x_m) with n vertices.
Returns
-------
The graph Ci_n(x_1, ..., x_m) consisting of n vertices 0, ..., n-1 such
that the vertex with label i is connected to the vertices labelled (i + x)
and (i - x), for all x in x_1 up to x_m, with the indices taken modulo n.
Parameters
----------
n : integer
The number of vertices the generated graph is to contain.
offsets : list of integers
A list of vertex offsets, x_1 up to x_m, as described above.
create_using : NetworkX graph type, optional
Use specified type to construct graph (default = networkx.Graph)
Examples
--------
Many well-known graph families are subfamilies of the circulant graphs; for
example, to generate the cycle graph on n points, we connect every vertex to
every other at offset plus or minus one. For n = 10,
>>> import networkx
>>> G = networkx.generators.classic.circulant_graph(10, [1])
>>> edges = [
... (0, 9), (0, 1), (1, 2), (2, 3), (3, 4),
... (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]
...
>>> sorted(edges) == sorted(G.edges())
True
Similarly, we can generate the complete graph on 5 points with the set of
offsets [1, 2]:
>>> G = networkx.generators.classic.circulant_graph(5, [1, 2])
>>> edges = [
... (0, 1), (0, 2), (0, 3), (0, 4), (1, 2),
... (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
...
>>> sorted(edges) == sorted(G.edges())
True
"""
G = empty_graph(n, create_using)
template = 'circulant_graph(%d, [%s])'
G.name = template % (n, ', '.join(str(j) for j in offsets))
for i in range(n):
for j in offsets:
G.add_edge(i, (i - j) % n)
G.add_edge(i, (i + j) % n)
return G
[docs]def cycle_graph(n,create_using=None):
"""Return the cycle graph C_n over n nodes.
C_n is the n-path with two end-nodes connected.
Node labels are the integers 0 to n-1
If create_using is a DiGraph, the direction is in increasing order.
"""
G=path_graph(n,create_using)
G.name="cycle_graph(%d)"%n
if n>1: G.add_edge(n-1,0)
return G
[docs]def dorogovtsev_goltsev_mendes_graph(n,create_using=None):
"""Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.
n is the generation.
See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.
"""
if create_using is not None:
if create_using.is_directed():
raise nx.NetworkXError("Directed Graph not supported")
if create_using.is_multigraph():
raise nx.NetworkXError("Multigraph not supported")
G=empty_graph(0,create_using)
G.name="Dorogovtsev-Goltsev-Mendes Graph"
G.add_edge(0,1)
if n==0:
return G
new_node = 2 # next node to be added
for i in range(1,n+1): #iterate over number of generations.
last_generation_edges = G.edges()
number_of_edges_in_last_generation = len(last_generation_edges)
for j in range(0,number_of_edges_in_last_generation):
G.add_edge(new_node,last_generation_edges[j][0])
G.add_edge(new_node,last_generation_edges[j][1])
new_node += 1
return G
[docs]def empty_graph(n=0,create_using=None):
"""Return the empty graph with n nodes and zero edges.
Node labels are the integers 0 to n-1
For example:
>>> G=nx.empty_graph(10)
>>> G.number_of_nodes()
10
>>> G.number_of_edges()
0
The variable create_using should point to a "graph"-like object that
will be cleaned (nodes and edges will be removed) and refitted as
an empty "graph" with n nodes with integer labels. This capability
is useful for specifying the class-nature of the resulting empty
"graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).
The variable create_using has two main uses:
Firstly, the variable create_using can be used to create an
empty digraph, network,etc. For example,
>>> n=10
>>> G=nx.empty_graph(n,create_using=nx.DiGraph())
will create an empty digraph on n nodes.
Secondly, one can pass an existing graph (digraph, pseudograph,
etc.) via create_using. For example, if G is an existing graph
(resp. digraph, pseudograph, etc.), then empty_graph(n,create_using=G)
will empty G (i.e. delete all nodes and edges using G.clear() in
base) and then add n nodes and zero edges, and return the modified
graph (resp. digraph, pseudograph, etc.).
See also create_empty_copy(G).
"""
if create_using is None:
# default empty graph is a simple graph
G=nx.Graph()
else:
G=create_using
G.clear()
G.add_nodes_from(range(n))
G.name="empty_graph(%d)"%n
return G
[docs]def grid_2d_graph(m,n,periodic=False,create_using=None):
""" Return the 2d grid graph of mxn nodes,
each connected to its nearest neighbors.
Optional argument periodic=True will connect
boundary nodes via periodic boundary conditions.
"""
G=empty_graph(0,create_using)
G.name="grid_2d_graph"
rows=range(m)
columns=range(n)
G.add_nodes_from( (i,j) for i in rows for j in columns )
G.add_edges_from( ((i,j),(i-1,j)) for i in rows for j in columns if i>0 )
G.add_edges_from( ((i,j),(i,j-1)) for i in rows for j in columns if j>0 )
if G.is_directed():
G.add_edges_from( ((i,j),(i+1,j)) for i in rows for j in columns if i<m-1 )
G.add_edges_from( ((i,j),(i,j+1)) for i in rows for j in columns if j<n-1 )
if periodic:
if n>2:
G.add_edges_from( ((i,0),(i,n-1)) for i in rows )
if G.is_directed():
G.add_edges_from( ((i,n-1),(i,0)) for i in rows )
if m>2:
G.add_edges_from( ((0,j),(m-1,j)) for j in columns )
if G.is_directed():
G.add_edges_from( ((m-1,j),(0,j)) for j in columns )
G.name="periodic_grid_2d_graph(%d,%d)"%(m,n)
return G
[docs]def grid_graph(dim,periodic=False):
""" Return the n-dimensional grid graph.
The dimension is the length of the list 'dim' and the
size in each dimension is the value of the list element.
E.g. G=grid_graph(dim=[2,3]) produces a 2x3 grid graph.
If periodic=True then join grid edges with periodic boundary conditions.
"""
dlabel="%s"%dim
if dim==[]:
G=empty_graph(0)
G.name="grid_graph(%s)"%dim
return G
if not is_list_of_ints(dim):
raise nx.NetworkXError("dim is not a list of integers")
if min(dim)<=0:
raise nx.NetworkXError(\
"dim is not a list of strictly positive integers")
if periodic:
func=cycle_graph
else:
func=path_graph
dim=list(dim)
current_dim=dim.pop()
G=func(current_dim)
while len(dim)>0:
current_dim=dim.pop()
# order matters: copy before it is cleared during the creation of Gnew
Gold=G.copy()
Gnew=func(current_dim)
# explicit: create_using=None
# This is so that we get a new graph of Gnew's class.
G=nx.cartesian_product(Gnew,Gold)
# graph G is done but has labels of the form (1,(2,(3,1)))
# so relabel
H=nx.relabel_nodes(G, flatten)
H.name="grid_graph(%s)"%dlabel
return H
[docs]def hypercube_graph(n):
"""Return the n-dimensional hypercube.
Node labels are the integers 0 to 2**n - 1.
"""
dim=n*[2]
G=grid_graph(dim)
G.name="hypercube_graph_(%d)"%n
return G
[docs]def ladder_graph(n,create_using=None):
"""Return the Ladder graph of length n.
This is two rows of n nodes, with
each pair connected by a single edge.
Node labels are the integers 0 to 2*n - 1.
"""
if create_using is not None and create_using.is_directed():
raise nx.NetworkXError("Directed Graph not supported")
G=empty_graph(2*n,create_using)
G.name="ladder_graph_(%d)"%n
G.add_edges_from([(v,v+1) for v in range(n-1)])
G.add_edges_from([(v,v+1) for v in range(n,2*n-1)])
G.add_edges_from([(v,v+n) for v in range(n)])
return G
[docs]def lollipop_graph(m,n,create_using=None):
"""Return the Lollipop Graph; `K_m` connected to `P_n`.
This is the Barbell Graph without the right barbell.
For m>1 and n>=0, the complete graph K_m is connected to the
path P_n. The resulting m+n nodes are labelled 0,...,m-1 for the
complete graph and m,...,m+n-1 for the path. The 2 subgraphs
are joined via the edge (m-1,m). If n=0, this is merely a complete
graph.
Node labels are the integers 0 to number_of_nodes - 1.
(This graph is an extremal example in David Aldous and Jim
Fill's etext on Random Walks on Graphs.)
"""
if create_using is not None and create_using.is_directed():
raise nx.NetworkXError("Directed Graph not supported")
if m<2:
raise nx.NetworkXError(\
"Invalid graph description, m should be >=2")
if n<0:
raise nx.NetworkXError(\
"Invalid graph description, n should be >=0")
# the ball
G=complete_graph(m,create_using)
# the stick
G.add_nodes_from([v for v in range(m,m+n)])
if n>1:
G.add_edges_from([(v,v+1) for v in range(m,m+n-1)])
# connect ball to stick
if m>0: G.add_edge(m-1,m)
G.name="lollipop_graph(%d,%d)"%(m,n)
return G
[docs]def null_graph(create_using=None):
"""Return the Null graph with no nodes or edges.
See empty_graph for the use of create_using.
"""
G=empty_graph(0,create_using)
G.name="null_graph()"
return G
[docs]def path_graph(n,create_using=None):
"""Return the Path graph P_n of n nodes linearly connected by n-1 edges.
Node labels are the integers 0 to n - 1.
If create_using is a DiGraph then the edges are directed in
increasing order.
"""
G=empty_graph(n,create_using)
G.name="path_graph(%d)"%n
G.add_edges_from([(v,v+1) for v in range(n-1)])
return G
[docs]def star_graph(n,create_using=None):
""" Return the Star graph with n+1 nodes: one center node, connected to n outer nodes.
Node labels are the integers 0 to n.
"""
G=complete_bipartite_graph(1,n,create_using)
G.name="star_graph(%d)"%n
return G
[docs]def trivial_graph(create_using=None):
""" Return the Trivial graph with one node (with integer label 0) and no edges.
"""
G=empty_graph(1,create_using)
G.name="trivial_graph()"
return G
[docs]def wheel_graph(n,create_using=None):
""" Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph.
Node labels are the integers 0 to n - 1.
"""
if n == 0:
return nx.empty_graph(n, create_using=create_using)
G=star_graph(n-1,create_using)
G.name="wheel_graph(%d)"%n
G.add_edges_from([(v,v+1) for v in range(1,n-1)])
if n>2:
G.add_edge(1,n-1)
return G
[docs]def complete_multipartite_graph(*block_sizes):
"""Returns the complete multipartite graph with the specified block sizes.
Parameters
----------
block_sizes : tuple of integers
The number of vertices in each block of the multipartite graph. The
length of this tuple is the number of blocks.
Returns
-------
G : NetworkX Graph
Returns the complete multipartite graph with the specified block sizes.
For each node, the node attribute ``'block'`` is an integer indicating
which block contains the node.
Examples
--------
Creating a complete tripartite graph, with blocks of one, two, and three
vertices, respectively.
>>> import networkx as nx
>>> G = nx.complete_multipartite_graph(1, 2, 3)
>>> [G.node[u]['block'] for u in G]
[0, 1, 1, 2, 2, 2]
>>> G.edges(0)
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
>>> G.edges(2)
[(2, 0), (2, 3), (2, 4), (2, 5)]
>>> G.edges(4)
[(4, 0), (4, 1), (4, 2)]
Notes
-----
This function generalizes several other graph generator functions.
- If no block sizes are given, this returns the null graph.
- If a single block size ``n`` is given, this returns the empty graph on
``n`` nodes.
- If two block sizes ``m`` and ``n`` are given, this returns the complete
bipartite graph on ``m + n`` nodes.
- If block sizes ``1`` and ``n`` are given, this returns the star graph on
``n + 1`` nodes.
See also
--------
complete_bipartite_graph
"""
G = nx.empty_graph(sum(block_sizes))
# If block_sizes is (n1, n2, n3, ...), create pairs of the form (0, n1),
# (n1, n1 + n2), (n1 + n2, n1 + n2 + n3), etc.
extents = zip([0] + list(accumulate(block_sizes)), accumulate(block_sizes))
blocks = [range(start, end) for start, end in extents]
for (i, block) in enumerate(blocks):
G.add_nodes_from(block, block=i)
# Across blocks, all vertices should be adjacent. We can use
# itertools.combinations() because the complete multipartite graph is an
# undirected graph.
for block1, block2 in itertools.combinations(blocks, 2):
G.add_edges_from(itertools.product(block1, block2))
G.name = 'complete_multiparite_graph{0}'.format(block_sizes)
return G