Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

Source code for networkx.algorithms.dag

# -*- coding: utf-8 -*-
from fractions import gcd
import networkx as nx
from networkx.utils.decorators import *
"""Algorithms for directed acyclic graphs (DAGs)."""
#    Copyright (C) 2006-2011 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = """\n""".join(['Aric Hagberg <aric.hagberg@gmail.com>',
                            'Dan Schult (dschult@colgate.edu)',
                            'Ben Edwards (bedwards@cs.unm.edu)'])
__all__ = ['descendants',
           'ancestors',
           'topological_sort',
           'topological_sort_recursive',
           'is_directed_acyclic_graph',
           'is_aperiodic',
           'transitive_closure',
           'antichains',
           'dag_longest_path',
           'dag_longest_path_length']


[docs]def descendants(G, source): """Return all nodes reachable from `source` in G. Parameters ---------- G : NetworkX DiGraph source : node in G Returns ------- des : set() The descendants of source in G """ if not G.has_node(source): raise nx.NetworkXError("The node %s is not in the graph." % source) des = set(nx.shortest_path_length(G, source=source).keys()) - set([source]) return des
[docs]def ancestors(G, source): """Return all nodes having a path to `source` in G. Parameters ---------- G : NetworkX DiGraph source : node in G Returns ------- ancestors : set() The ancestors of source in G """ if not G.has_node(source): raise nx.NetworkXError("The node %s is not in the graph." % source) anc = set(nx.shortest_path_length(G, target=source).keys()) - set([source]) return anc
[docs]def is_directed_acyclic_graph(G): """Return True if the graph G is a directed acyclic graph (DAG) or False if not. Parameters ---------- G : NetworkX graph A graph Returns ------- is_dag : bool True if G is a DAG, false otherwise """ if not G.is_directed(): return False try: topological_sort(G, reverse=True) return True except nx.NetworkXUnfeasible: return False
[docs]def topological_sort(G, nbunch=None, reverse=False): """Return a list of nodes in topological sort order. A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order. Parameters ---------- G : NetworkX digraph A directed graph nbunch : container of nodes (optional) Explore graph in specified order given in nbunch reverse : bool, optional Return postorder instead of preorder if True. Reverse mode is a bit more efficient. Raises ------ NetworkXError Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised. NetworkXUnfeasible If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised. Notes ----- This algorithm is based on a description and proof in The Algorithm Design Manual [1]_ . See also -------- is_directed_acyclic_graph References ---------- .. [1] Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998). http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/ """ if not G.is_directed(): raise nx.NetworkXError( "Topological sort not defined on undirected graphs.") # nonrecursive version seen = set() order = [] explored = set() if nbunch is None: nbunch = G.nodes_iter() for v in nbunch: # process all vertices in G if v in explored: continue fringe = [v] # nodes yet to look at while fringe: w = fringe[-1] # depth first search if w in explored: # already looked down this branch fringe.pop() continue seen.add(w) # mark as seen # Check successors for cycles and for new nodes new_nodes = [] for n in G[w]: if n not in explored: if n in seen: # CYCLE !! raise nx.NetworkXUnfeasible("Graph contains a cycle.") new_nodes.append(n) if new_nodes: # Add new_nodes to fringe fringe.extend(new_nodes) else: # No new nodes so w is fully explored explored.add(w) order.append(w) fringe.pop() # done considering this node if reverse: return order else: return list(reversed(order))
[docs]def topological_sort_recursive(G, nbunch=None, reverse=False): """Return a list of nodes in topological sort order. A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order. Parameters ---------- G : NetworkX digraph nbunch : container of nodes (optional) Explore graph in specified order given in nbunch reverse : bool, optional Return postorder instead of preorder if True. Reverse mode is a bit more efficient. Raises ------ NetworkXError Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised. NetworkXUnfeasible If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised. Notes ----- This is a recursive version of topological sort. See also -------- topological_sort is_directed_acyclic_graph """ if not G.is_directed(): raise nx.NetworkXError( "Topological sort not defined on undirected graphs.") def _dfs(v): ancestors.add(v) for w in G[v]: if w in ancestors: raise nx.NetworkXUnfeasible("Graph contains a cycle.") if w not in explored: _dfs(w) ancestors.remove(v) explored.add(v) order.append(v) ancestors = set() explored = set() order = [] if nbunch is None: nbunch = G.nodes_iter() for v in nbunch: if v not in explored: _dfs(v) if reverse: return order else: return list(reversed(order))
[docs]def is_aperiodic(G): """Return True if G is aperiodic. A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph. Parameters ---------- G : NetworkX DiGraph Graph Returns ------- aperiodic : boolean True if the graph is aperiodic False otherwise Raises ------ NetworkXError If G is not directed Notes ----- This uses the method outlined in [1]_, which runs in O(m) time given m edges in G. Note that a graph is not aperiodic if it is acyclic as every integer trivial divides length 0 cycles. References ---------- .. [1] Jarvis, J. P.; Shier, D. R. (1996), Graph-theoretic analysis of finite Markov chains, in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling: A Multidisciplinary Approach, CRC Press. """ if not G.is_directed(): raise nx.NetworkXError( "is_aperiodic not defined for undirected graphs") s = next(G.nodes_iter()) levels = {s: 0} this_level = [s] g = 0 l = 1 while this_level: next_level = [] for u in this_level: for v in G[u]: if v in levels: # Non-Tree Edge g = gcd(g, levels[u] - levels[v] + 1) else: # Tree Edge next_level.append(v) levels[v] = l this_level = next_level l += 1 if len(levels) == len(G): # All nodes in tree return g == 1 else: return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))
@not_implemented_for('undirected')
[docs]def transitive_closure(G): """ Returns transitive closure of a directed graph The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that for all v,w in V there is an edge (v,w) in E+ if and only if there is a non-null path from v to w in G. Parameters ---------- G : NetworkX DiGraph Graph Returns ------- TC : NetworkX DiGraph Graph Raises ------ NetworkXNotImplemented If G is not directed References ---------- .. [1] http://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py """ TC = nx.DiGraph() TC.add_nodes_from(G.nodes_iter()) TC.add_edges_from(G.edges_iter()) for v in G: TC.add_edges_from((v, u) for u in nx.dfs_preorder_nodes(G, source=v) if v != u) return TC
@not_implemented_for('undirected')
[docs]def antichains(G): """Generates antichains from a DAG. An antichain is a subset of a partially ordered set such that any two elements in the subset are incomparable. Parameters ---------- G : NetworkX DiGraph Graph Returns ------- antichain : generator object Raises ------ NetworkXNotImplemented If G is not directed NetworkXUnfeasible If G contains a cycle Notes ----- This function was originally developed by Peter Jipsen and Franco Saliola for the SAGE project. It's included in NetworkX with permission from the authors. Original SAGE code at: https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py References ---------- .. [1] Free Lattices, by R. Freese, J. Jezek and J. B. Nation, AMS, Vol 42, 1995, p. 226. """ TC = nx.transitive_closure(G) antichains_stacks = [([], nx.topological_sort(G, reverse=True))] while antichains_stacks: (antichain, stack) = antichains_stacks.pop() # Invariant: # - the elements of antichain are independent # - the elements of stack are independent from those of antichain yield antichain while stack: x = stack.pop() new_antichain = antichain + [x] new_stack = [ t for t in stack if not ((t in TC[x]) or (x in TC[t]))] antichains_stacks.append((new_antichain, new_stack))
@not_implemented_for('undirected')
[docs]def dag_longest_path(G): """Returns the longest path in a DAG Parameters ---------- G : NetworkX DiGraph Graph Returns ------- path : list Longest path Raises ------ NetworkXNotImplemented If G is not directed See also -------- dag_longest_path_length """ dist = {} # stores [node, distance] pair for node in nx.topological_sort(G): # pairs of dist,node for all incoming edges pairs = [(dist[v][0] + 1, v) for v in G.pred[node]] if pairs: dist[node] = max(pairs) else: dist[node] = (0, node) node, (length, _) = max(dist.items(), key=lambda x: x[1]) path = [] while length > 0: path.append(node) length, node = dist[node] return list(reversed(path))
@not_implemented_for('undirected')
[docs]def dag_longest_path_length(G): """Returns the longest path length in a DAG Parameters ---------- G : NetworkX DiGraph Graph Returns ------- path_length : int Longest path length Raises ------ NetworkXNotImplemented If G is not directed See also -------- dag_longest_path """ path_length = len(nx.dag_longest_path(G)) - 1 return path_length