Project Homepage | Source Code Logo
2.5
  • Install
  • Tutorial
  • Gallery
  • Reference
    • Introduction
    • Graph types
    • Algorithms
      • Approximations and Heuristics
      • Assortativity
      • Asteroidal
      • Bipartite
      • Boundary
      • Bridges
      • Centrality
      • Chains
      • Chordal
      • Clique
      • Clustering
      • Coloring
      • Communicability
      • Communities
      • Components
      • Connectivity
      • Cores
      • Covering
      • Cycles
      • Cuts
      • D-Separation
      • Directed Acyclic Graphs
      • Distance Measures
      • Distance-Regular Graphs
      • Dominance
      • Dominating Sets
      • Efficiency
      • Eulerian
      • Flows
      • Graph Hashing
      • Graphical degree sequence
      • Hierarchy
      • Hybrid
      • Isolates
      • Isomorphism
      • Link Analysis
      • Link Prediction
      • Lowest Common Ancestor
      • Matching
      • Minors
      • Maximal independent set
      • non-randomness
      • Moral
      • Node Classification
      • Operators
      • Planarity
      • Planar Drawing
      • Reciprocity
      • Regular
      • Rich Club
      • Shortest Paths
      • Similarity Measures
      • Simple Paths
      • Small-world
      • s metric
      • Sparsifiers
      • Structural holes
      • Swap
      • Threshold Graphs
      • Tournament
      • Traversal
      • Tree
      • Triads
      • Vitality
      • Voronoi cells
      • Wiener index
    • Functions
    • Graph generators
    • Linear algebra
    • Converting to and from other data formats
    • Relabeling nodes
    • Reading and writing graphs
    • Drawing
    • Randomness
    • Exceptions
    • Utilities
    • Glossary
  • Developer Guide
  • Release Log
  • License
  • About Us
  • Citing
  • Bibliography
NetworkX
  • »
  • Reference »
  • Algorithms »
  • Link Prediction »
  • networkx.algorithms.link_prediction.adamic_adar_index

networkx.algorithms.link_prediction.adamic_adar_index¶

adamic_adar_index(G, ebunch=None)[source]¶

Compute the Adamic-Adar index of all node pairs in ebunch.

Adamic-Adar index of u and v is defined as

\[\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\). This index leads to zero-division for nodes only connected via self-loops. It is intended to be used when no self-loops are present.

Parameters
  • G (graph) – NetworkX undirected graph.

  • ebunch (iterable of node pairs, optional (default = None)) – Adamic-Adar index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

Returns

piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Adamic-Adar index.

Return type

iterator

Examples

>>> G = nx.complete_graph(5)
>>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
...     print(f"({u}, {v}) -> {p:.8f}")
(0, 1) -> 2.16404256
(2, 3) -> 2.16404256

References

1

D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf

Next Previous

© Copyright 2004-2020, NetworkX Developers Last updated on Aug 22, 2020.

Built with Sphinx using a theme provided by Read the Docs.