Project Homepage | Source Code Logo
2.5
  • Install
  • Tutorial
  • Gallery
  • Reference
    • Introduction
    • Graph types
    • Algorithms
      • Approximations and Heuristics
      • Assortativity
      • Asteroidal
      • Bipartite
      • Boundary
      • Bridges
      • Centrality
      • Chains
      • Chordal
      • Clique
      • Clustering
      • Coloring
      • Communicability
      • Communities
      • Components
      • Connectivity
      • Cores
      • Covering
      • Cycles
      • Cuts
      • D-Separation
      • Directed Acyclic Graphs
      • Distance Measures
      • Distance-Regular Graphs
      • Dominance
      • Dominating Sets
      • Efficiency
      • Eulerian
      • Flows
      • Graph Hashing
      • Graphical degree sequence
      • Hierarchy
      • Hybrid
      • Isolates
      • Isomorphism
      • Link Analysis
      • Link Prediction
      • Lowest Common Ancestor
      • Matching
      • Minors
      • Maximal independent set
      • non-randomness
      • Moral
      • Node Classification
      • Operators
      • Planarity
      • Planar Drawing
      • Reciprocity
      • Regular
      • Rich Club
      • Shortest Paths
      • Similarity Measures
      • Simple Paths
      • Small-world
      • s metric
      • Sparsifiers
      • Structural holes
      • Swap
      • Threshold Graphs
      • Tournament
      • Traversal
      • Tree
      • Triads
      • Vitality
      • Voronoi cells
      • Wiener index
    • Functions
    • Graph generators
    • Linear algebra
    • Converting to and from other data formats
    • Relabeling nodes
    • Reading and writing graphs
    • Drawing
    • Randomness
    • Exceptions
    • Utilities
    • Glossary
  • Developer Guide
  • Release Log
  • License
  • About Us
  • Citing
  • Bibliography
NetworkX
  • »
  • Reference »
  • Algorithms »
  • Link Analysis »
  • networkx.algorithms.link_analysis.hits_alg.hits_numpy

networkx.algorithms.link_analysis.hits_alg.hits_numpy¶

hits_numpy(G, normalized=True)[source]¶

Returns HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

Parameters
  • G (graph) – A NetworkX graph

  • normalized (bool (default=True)) – Normalize results by the sum of all of the values.

Returns

(hubs,authorities) – Two dictionaries keyed by node containing the hub and authority values.

Return type

two-tuple of dictionaries

Examples

>>> G = nx.path_graph(4)
>>> h, a = nx.hits(G)

Notes

The eigenvector calculation uses NumPy’s interface to LAPACK.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.

References

1

A. Langville and C. Meyer, “A survey of eigenvector methods of web information retrieval.” http://citeseer.ist.psu.edu/713792.html

2

Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-32, 1999. doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.

Next Previous

© Copyright 2004-2020, NetworkX Developers Last updated on Aug 22, 2020.

Built with Sphinx using a theme provided by Read the Docs.