networkx.algorithms.bipartite.cluster.latapy_clustering

latapy_clustering(G, nodes=None, mode='dot')[source]

Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density of connections defined as 1:

cu=vN(N(u))cuv|N(N(u))|

where N(N(u)) are the second order neighbors of u in G excluding u, and c_{uv} is the pairwise clustering coefficient between nodes u and v.

The mode selects the function for c_{uv} which can be:

dot:

cuv=|N(u)N(v)||N(u)N(v)|

min:

cuv=|N(u)N(v)|min(|N(u)|,|N(v)|)

max:

cuv=|N(u)N(v)|max(|N(u)|,|N(v)|)
Parameters
  • G (graph) – A bipartite graph

  • nodes (list or iterable (optional)) – Compute bipartite clustering for these nodes. The default is all nodes in G.

  • mode (string) – The pariwise bipartite clustering method to be used in the computation. It must be “dot”, “max”, or “min”.

Returns

clustering – A dictionary keyed by node with the clustering coefficient value.

Return type

dictionary

Examples

>>>
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)  # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G, mode="min")
>>> c[0]
1.0

See also

robins_alexander_clustering(), square_clustering(), average_clustering()

References

1

Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48.