Note
Click here to download the full example code
AtlasΒΆ
Atlas of all graphs of 6 nodes or less.
Out:
graph has 779 nodes with 1073 edges
137 connected components
import random
# This example needs Graphviz and either PyGraphviz or pydot.
# from networkx.drawing.nx_pydot import graphviz_layout
from networkx.drawing.nx_agraph import graphviz_layout
import matplotlib.pyplot as plt
import networkx as nx
from networkx.algorithms.isomorphism.isomorph import (
graph_could_be_isomorphic as isomorphic,
)
from networkx.generators.atlas import graph_atlas_g
def atlas6():
""" Return the atlas of all connected graphs of 6 nodes or less.
Attempt to check for isomorphisms and remove.
"""
Atlas = graph_atlas_g()[0:208] # 208
# remove isolated nodes, only connected graphs are left
U = nx.Graph() # graph for union of all graphs in atlas
for G in Atlas:
zerodegree = [n for n in G if G.degree(n) == 0]
for n in zerodegree:
G.remove_node(n)
U = nx.disjoint_union(U, G)
# iterator of graphs of all connected components
C = (U.subgraph(c) for c in nx.connected_components(U))
UU = nx.Graph()
# do quick isomorphic-like check, not a true isomorphism checker
nlist = [] # list of nonisomorphic graphs
for G in C:
# check against all nonisomorphic graphs so far
if not iso(G, nlist):
nlist.append(G)
UU = nx.disjoint_union(UU, G) # union the nonisomorphic graphs
return UU
def iso(G1, glist):
"""Quick and dirty nonisomorphism checker used to check isomorphisms."""
for G2 in glist:
if isomorphic(G1, G2):
return True
return False
G = atlas6()
print(f"graph has {nx.number_of_nodes(G)} nodes with {nx.number_of_edges(G)} edges")
print(nx.number_connected_components(G), "connected components")
plt.figure(1, figsize=(8, 8))
# layout graphs with positions using graphviz neato
pos = graphviz_layout(G, prog="neato")
# color nodes the same in each connected subgraph
C = (G.subgraph(c) for c in nx.connected_components(G))
for g in C:
c = [random.random()] * nx.number_of_nodes(g) # random color...
nx.draw(g, pos, node_size=40, node_color=c, vmin=0.0, vmax=1.0, with_labels=False)
plt.show()
Total running time of the script: ( 0 minutes 7.126 seconds)