networkx.drawing.layout.spring_layout¶
-
spring_layout
(G, k=None, pos=None, fixed=None, iterations=50, threshold=0.0001, weight='weight', scale=1, center=None, dim=2, seed=None)¶ Position nodes using Fruchterman-Reingold force-directed algorithm.
Parameters: - G (NetworkX graph or list of nodes) – A position will be assigned to every node in G.
- k (float (default=None)) – Optimal distance between nodes. If None the distance is set to 1/sqrt(n) where n is the number of nodes. Increase this value to move nodes farther apart.
- pos (dict or None optional (default=None)) – Initial positions for nodes as a dictionary with node as keys and values as a coordinate list or tuple. If None, then use random initial positions.
- fixed (list or None optional (default=None)) – Nodes to keep fixed at initial position.
- iterations (int optional (default=50)) – Maximum number of iterations taken
- threshold (float optional (default = 1e-4)) – Threshold for relative error in node position changes. The iteration stops if the error is below this threshold.
- weight (string or None optional (default=’weight’)) – The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1.
- scale (number (default: 1)) – Scale factor for positions. Not used unless
fixed is None
. - center (array-like or None) – Coordinate pair around which to center the layout.
Not used unless
fixed is None
. - dim (int) – Dimension of layout.
- seed (int, RandomState instance or None optional (default=None)) – Set the random state for deterministic node layouts.
If int,
seed
is the seed used by the random number generator, if numpy.random.RandomState instance,seed
is the random number generator, if None, the random number generator is the RandomState instance used by numpy.random.
Returns: pos – A dictionary of positions keyed by node
Return type: Examples
>>> G = nx.path_graph(4) >>> pos = nx.spring_layout(G)
# The same using longer but equivalent function name >>> pos = nx.fruchterman_reingold_layout(G)