Warning
This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.
current_flow_betweenness_centrality¶
-
current_flow_betweenness_centrality
(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full')[source]¶ Compute current-flow betweenness centrality for nodes.
Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths.
Current-flow betweenness centrality is also known as random-walk betweenness centrality [R184].
Parameters: G : graph
A NetworkX graph
normalized : bool, optional (default=True)
If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G.
weight : string or None, optional (default=’weight’)
Key for edge data used as the edge weight. If None, then use 1 as each edge weight.
dtype: data type (float)
Default data type for internal matrices. Set to np.float32 for lower memory consumption.
solver: string (default=’lu’)
Type of linear solver to use for computing the flow matrix. Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).
Returns: nodes : dictionary
Dictionary of nodes with betweenness centrality as the value.
See also
approximate_current_flow_betweenness_centrality
,betweenness_centrality
,edge_betweenness_centrality
,edge_current_flow_betweenness_centrality
Notes
Current-flow betweenness can be computed in O(I(n−1)+mnlogn) time [R183], where I(n−1) is the time needed to compute the inverse Laplacian. For a full matrix this is O(n3) but using sparse methods you can achieve O(nm√k) where k is the Laplacian matrix condition number.
The space required is O(nw) where `w is the width of the sparse Laplacian matrix. Worse case is w=n for O(n^2).
If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set to 1.
References
[R183] (1, 2) Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf [R184] (1, 2) A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).