Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

# Source code for networkx.algorithms.dag

# -*- coding: utf-8 -*-
from fractions import gcd
import networkx as nx
"""Algorithms for directed acyclic graphs (DAGs)."""
#    Copyright (C) 2006-2011 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = """\n""".join(['Aric Hagberg <aric.hagberg@gmail.com>',
'Dan Schult (dschult@colgate.edu)',
'Ben Edwards (bedwards@cs.unm.edu)'])
__all__ = ['descendants',
'ancestors',
'topological_sort',
'topological_sort_recursive',
'is_directed_acyclic_graph',
'is_aperiodic']

[docs]def descendants(G, source): """Return all nodes reachable from source in G. Parameters ---------- G : NetworkX DiGraph source : node in G Returns ------- des : set() The descendants of source in G """ if not G.has_node(source): raise nx.NetworkXError("The node %s is not in the graph." % source) des = set(nx.shortest_path_length(G, source=source).keys()) - set([source]) return des
[docs]def ancestors(G, source): """Return all nodes having a path to source in G. Parameters ---------- G : NetworkX DiGraph source : node in G Returns ------- ancestors : set() The ancestors of source in G """ if not G.has_node(source): raise nx.NetworkXError("The node %s is not in the graph." % source) anc = set(nx.shortest_path_length(G, target=source).keys()) - set([source]) return anc
[docs]def is_directed_acyclic_graph(G): """Return True if the graph G is a directed acyclic graph (DAG) or False if not. Parameters ---------- G : NetworkX graph A graph Returns ------- is_dag : bool True if G is a DAG, false otherwise """ if not G.is_directed(): return False try: topological_sort(G, reverse=True) return True except nx.NetworkXUnfeasible: return False
[docs]def topological_sort(G, nbunch=None, reverse=False): """Return a list of nodes in topological sort order. A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order. Parameters ---------- G : NetworkX digraph A directed graph nbunch : container of nodes (optional) Explore graph in specified order given in nbunch reverse : bool, optional Return postorder instead of preorder if True. Reverse mode is a bit more efficient. Raises ------ NetworkXError Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised. NetworkXUnfeasible If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised. Notes ----- This algorithm is based on a description and proof in The Algorithm Design Manual [1]_ . See also -------- is_directed_acyclic_graph References ---------- .. [1] Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998). http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/ """ if not G.is_directed(): raise nx.NetworkXError( "Topological sort not defined on undirected graphs.") # nonrecursive version seen = set() order = [] explored = set() if nbunch is None: nbunch = G.nodes_iter() for v in nbunch: # process all vertices in G if v in explored: continue fringe = [v] # nodes yet to look at while fringe: w = fringe[-1] # depth first search if w in explored: # already looked down this branch fringe.pop() continue seen.add(w) # mark as seen # Check successors for cycles and for new nodes new_nodes = [] for n in G[w]: if n not in explored: if n in seen: #CYCLE !! raise nx.NetworkXUnfeasible("Graph contains a cycle.") new_nodes.append(n) if new_nodes: # Add new_nodes to fringe fringe.extend(new_nodes) else: # No new nodes so w is fully explored explored.add(w) order.append(w) fringe.pop() # done considering this node if reverse: return order else: return list(reversed(order))
[docs]def topological_sort_recursive(G, nbunch=None, reverse=False): """Return a list of nodes in topological sort order. A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order. Parameters ---------- G : NetworkX digraph nbunch : container of nodes (optional) Explore graph in specified order given in nbunch reverse : bool, optional Return postorder instead of preorder if True. Reverse mode is a bit more efficient. Raises ------ NetworkXError Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised. NetworkXUnfeasible If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised. Notes ----- This is a recursive version of topological sort. See also -------- topological_sort is_directed_acyclic_graph """ if not G.is_directed(): raise nx.NetworkXError( "Topological sort not defined on undirected graphs.") def _dfs(v): ancestors.add(v) for w in G[v]: if w in ancestors: raise nx.NetworkXUnfeasible("Graph contains a cycle.") if w not in explored: _dfs(w) ancestors.remove(v) explored.add(v) order.append(v) ancestors = set() explored = set() order = [] if nbunch is None: nbunch = G.nodes_iter() for v in nbunch: if v not in explored: _dfs(v) if reverse: return order else: return list(reversed(order))
[docs]def is_aperiodic(G): """Return True if G is aperiodic. A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph. Parameters ---------- G : NetworkX DiGraph Graph Returns ------- aperiodic : boolean True if the graph is aperiodic False otherwise Raises ------ NetworkXError If G is not directed Notes ----- This uses the method outlined in [1]_, which runs in O(m) time given m edges in G. Note that a graph is not aperiodic if it is acyclic as every integer trivial divides length 0 cycles. References ---------- .. [1] Jarvis, J. P.; Shier, D. R. (1996), Graph-theoretic analysis of finite Markov chains, in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling: A Multidisciplinary Approach, CRC Press. """ if not G.is_directed(): raise nx.NetworkXError("is_aperiodic not defined for undirected graphs") s = next(G.nodes_iter()) levels = {s:0} this_level = [s] g = 0 l = 1 while this_level: next_level = [] for u in this_level: for v in G[u]: if v in levels: # Non-Tree Edge g = gcd(g, levels[u]-levels[v] + 1) else: # Tree Edge next_level.append(v) levels[v] = l this_level = next_level l += 1 if len(levels)==len(G): #All nodes in tree return g==1 else: return g==1 and nx.is_aperiodic(G.subgraph(set(G)-set(levels)))