stoer_wagner¶
-
stoer_wagner
(G, weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>)[source]¶ Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.
Determine the minimum edge cut of a connected graph using the Stoer-Wagner algorithm. In weighted cases, all weights must be nonnegative.
The running time of the algorithm depends on the type of heaps used:
Type of heap Running time Binary heap \(O(n (m + n) \log n)\) Fibonacci heap \(O(nm + n^2 \log n)\) Pairing heap \(O(2^{2 \sqrt{\log \log n}} nm + n^2 \log n)\) Parameters: - G (NetworkX graph) – Edges of the graph are expected to have an attribute named by the weight parameter below. If this attribute is not present, the edge is considered to have unit weight.
- weight (string) – Name of the weight attribute of the edges. If the attribute is not present, unit weight is assumed. Default value: ‘weight’.
- heap (class) –
Type of heap to be used in the algorithm. It should be a subclass of
MinHeap
or implement a compatible interface.If a stock heap implementation is to be used,
BinaryHeap
is recommeded overPairingHeap
for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy),PairingHeap
provides better performance. Default value:BinaryHeap
.
Returns: - cut_value (integer or float) – The sum of weights of edges in a minimum cut.
- partition (pair of node lists) – A partitioning of the nodes that defines a minimum cut.
Raises: NetworkXNotImplemented
– If the graph is directed or a multigraph.NetworkXError
– If the graph has less than two nodes, is not connected or has a negative-weighted edge.
Examples
>>> G = nx.Graph() >>> G.add_edge('x','a', weight=3) >>> G.add_edge('x','b', weight=1) >>> G.add_edge('a','c', weight=3) >>> G.add_edge('b','c', weight=5) >>> G.add_edge('b','d', weight=4) >>> G.add_edge('d','e', weight=2) >>> G.add_edge('c','y', weight=2) >>> G.add_edge('e','y', weight=3) >>> cut_value, partition = nx.stoer_wagner(G) >>> cut_value 4