Return the graph adjacency matrix as a SciPy sparse matrix.
Parameters: | G : graph
nodelist : list, optional
dtype : NumPy data-type, optional
|
---|---|
Returns: | M : SciPy sparse matrix
|
Notes
The matrix entries are populated using the ‘weight’ edge attribute. When an edge does not have the ‘weight’ attribute, the value of the entry is 1. For multiple edges, the values of the entries are the sums of the edge attributes for each edge.
When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.
Uses lil_matrix format. To convert to other formats see the documentation for scipy.sparse.
Examples
>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2])
>>> S.todense()
matrix([[ 0., 2., 0.],
[ 1., 0., 0.],
[ 0., 0., 4.]])