NetworkX

Table Of Contents

Previous topic

networkx.linalg.attrmatrix.attr_sparse_matrix

Next topic

networkx.convert.to_networkx_graph

Converting to and from other data formats

To NetworkX Graph

This module provides functions to convert NetworkX graphs to and from other formats.

The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically.

Examples

Create a 10 node random graph from a numpy matrix

>>> import numpy
>>> a=numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10))
>>> D=nx.DiGraph(a) 

or equivalently

>>> D=nx.to_networkx_graph(a,create_using=nx.DiGraph()) 

Create a graph with a single edge from a dictionary of dictionaries

>>> d={0: {1: 1}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)

See Also

nx_pygraphviz, nx_pydot

to_networkx_graph(data[, create_using, ...]) Make a NetworkX graph from a known data structure.

Relabeling

convert_node_labels_to_integers(G[, ...]) Return a copy of G node labels replaced with integers.
relabel_nodes(G, mapping) Return a copy of G with node labels transformed by mapping.

Dictionaries

to_dict_of_dicts(G[, nodelist, edge_data]) Return adjacency representation of graph as a dictionary of dictionaries
from_dict_of_dicts(d[, create_using, ...]) Return a graph from a dictionary of dictionaries.

Lists

to_dict_of_lists(G[, nodelist]) Return adjacency representation of graph as a dictionary of lists
from_dict_of_lists(d[, create_using]) Return a graph from a dictionary of lists.
to_edgelist(G[, nodelist]) Return a list of edges in the graph.
from_edgelist(edgelist[, create_using]) Return a graph from a list of edges.

Numpy

to_numpy_matrix(G[, nodelist, dtype, order]) Return the graph adjacency matrix as a NumPy matrix.
from_numpy_matrix(A[, create_using]) Return a graph from numpy matrix adjacency list.

Scipy

to_scipy_sparse_matrix(G[, nodelist, dtype]) Return the graph adjacency matrix as a SciPy sparse matrix.
from_scipy_sparse_matrix(A[, create_using]) Return a graph from scipy sparse matrix adjacency list.