Source code for networkx.algorithms.assortativity.mixing

"""
Mixing matrices for node attributes and degree.
"""
from networkx.utils import dict_to_numpy_array
from networkx.algorithms.assortativity.pairs import node_degree_xy, node_attribute_xy

__all__ = [
    "attribute_mixing_matrix",
    "attribute_mixing_dict",
    "degree_mixing_matrix",
    "degree_mixing_dict",
    "numeric_mixing_matrix",
    "mixing_dict",
]


[docs]def attribute_mixing_dict(G, attribute, nodes=None, normalized=False): """Returns dictionary representation of mixing matrix for attribute. Parameters ---------- G : graph NetworkX graph object. attribute : string Node attribute key. nodes: list or iterable (optional) Unse nodes in container to build the dict. The default is all nodes. normalized : bool (default=False) Return counts if False or probabilities if True. Examples -------- >>> G = nx.Graph() >>> G.add_nodes_from([0, 1], color="red") >>> G.add_nodes_from([2, 3], color="blue") >>> G.add_edge(1, 3) >>> d = nx.attribute_mixing_dict(G, "color") >>> print(d["red"]["blue"]) 1 >>> print(d["blue"]["red"]) # d symmetric for undirected graphs 1 Returns ------- d : dictionary Counts or joint probability of occurrence of attribute pairs. """ xy_iter = node_attribute_xy(G, attribute, nodes) return mixing_dict(xy_iter, normalized=normalized)
[docs]def attribute_mixing_matrix(G, attribute, nodes=None, mapping=None, normalized=True): """Returns mixing matrix for attribute. Parameters ---------- G : graph NetworkX graph object. attribute : string Node attribute key. nodes: list or iterable (optional) Use only nodes in container to build the matrix. The default is all nodes. mapping : dictionary, optional Mapping from node attribute to integer index in matrix. If not specified, an arbitrary ordering will be used. normalized : bool (default=True) Return counts if False or probabilities if True. Returns ------- m: numpy array Counts or joint probability of occurrence of attribute pairs. """ d = attribute_mixing_dict(G, attribute, nodes) a = dict_to_numpy_array(d, mapping=mapping) if normalized: a = a / a.sum() return a
[docs]def degree_mixing_dict(G, x="out", y="in", weight=None, nodes=None, normalized=False): """Returns dictionary representation of mixing matrix for degree. Parameters ---------- G : graph NetworkX graph object. x: string ('in','out') The degree type for source node (directed graphs only). y: string ('in','out') The degree type for target node (directed graphs only). weight: string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. normalized : bool (default=False) Return counts if False or probabilities if True. Returns ------- d: dictionary Counts or joint probability of occurrence of degree pairs. """ xy_iter = node_degree_xy(G, x=x, y=y, nodes=nodes, weight=weight) return mixing_dict(xy_iter, normalized=normalized)
[docs]def degree_mixing_matrix(G, x="out", y="in", weight=None, nodes=None, normalized=True): """Returns mixing matrix for attribute. Parameters ---------- G : graph NetworkX graph object. x: string ('in','out') The degree type for source node (directed graphs only). y: string ('in','out') The degree type for target node (directed graphs only). nodes: list or iterable (optional) Build the matrix using only nodes in container. The default is all nodes. weight: string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. normalized : bool (default=True) Return counts if False or probabilities if True. Returns ------- m: numpy array Counts, or joint probability, of occurrence of node degree. """ d = degree_mixing_dict(G, x=x, y=y, nodes=nodes, weight=weight) s = set(d.keys()) for k, v in d.items(): s.update(v.keys()) m = max(s) mapping = {x: x for x in range(m + 1)} a = dict_to_numpy_array(d, mapping=mapping) if normalized: a = a / a.sum() return a
[docs]def numeric_mixing_matrix(G, attribute, nodes=None, normalized=True): """Returns numeric mixing matrix for attribute. The attribute must be an integer. Parameters ---------- G : graph NetworkX graph object. attribute : string Node attribute key. The corresponding attribute must be an integer. nodes: list or iterable (optional) Build the matrix only with nodes in container. The default is all nodes. normalized : bool (default=True) Return counts if False or probabilities if True. Returns ------- m: numpy array Counts, or joint, probability of occurrence of node attribute pairs. """ d = attribute_mixing_dict(G, attribute, nodes) s = set(d.keys()) for k, v in d.items(): s.update(v.keys()) m = max(s) mapping = {x: x for x in range(m + 1)} a = dict_to_numpy_array(d, mapping=mapping) if normalized: a = a / a.sum() return a
[docs]def mixing_dict(xy, normalized=False): """Returns a dictionary representation of mixing matrix. Parameters ---------- xy : list or container of two-tuples Pairs of (x,y) items. attribute : string Node attribute key normalized : bool (default=False) Return counts if False or probabilities if True. Returns ------- d: dictionary Counts or Joint probability of occurrence of values in xy. """ d = {} psum = 0.0 for x, y in xy: if x not in d: d[x] = {} if y not in d: d[y] = {} v = d[x].get(y, 0) d[x][y] = v + 1 psum += 1 if normalized: for k, jdict in d.items(): for j in jdict: jdict[j] /= psum return d