Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

ISMAGS Algorithm

ISMAGS Algorithm

Provides a Python implementation of the ISMAGS algorithm. 1

It is capable of finding (subgraph) isomorphisms between two graphs, taking the symmetry of the subgraph into account. In most cases the VF2 algorithm is faster (at least on small graphs) than this implementation, but in some cases there is an exponential number of isomorphisms that are symmetrically equivalent. In that case, the ISMAGS algorithm will provide only one solution per symmetry group.

>>> import networkx as nx
>>> petersen = nx.petersen_graph()
>>> ismags = nx.isomorphism.ISMAGS(petersen, petersen)
>>> isomorphisms = list(ismags.isomorphisms_iter(symmetry=False))
>>> len(isomorphisms)
120
>>> isomorphisms = list(ismags.isomorphisms_iter(symmetry=True))
>>> answer = [{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7:7, 8: 8, 9: 9}]
>>> answer == isomorphisms
True

In addition, this implementation also provides an interface to find the largest common induced subgraph 2 between any two graphs, again taking symmetry into account. Given graph and subgraph the algorithm will remove nodes from the subgraph until subgraph is isomorphic to a subgraph of graph. Since only the symmetry of subgraph is taken into account it is worth thinking about how you provide your graphs:

>>> graph1 = nx.path_graph(4)
>>> graph2 = nx.star_graph(3)
>>> ismags = nx.isomorphism.ISMAGS(graph1, graph2)
>>> ismags.is_isomorphic()
False
>>> largest_common_subgraph = list(ismags.largest_common_subgraph())
>>> answer = [
...     {1: 0, 0: 1, 2: 2},
...     {2: 0, 1: 1, 3: 2}
... ]
>>> answer == largest_common_subgraph
True
>>> ismags2 = nx.isomorphism.ISMAGS(graph2, graph1)
>>> largest_common_subgraph = list(ismags2.largest_common_subgraph())
>>> answer = [
...     {1: 0, 0: 1, 2: 2},
...     {1: 0, 0: 1, 3: 2},
...     {2: 0, 0: 1, 1: 2},
...     {2: 0, 0: 1, 3: 2},
...     {3: 0, 0: 1, 1: 2},
...     {3: 0, 0: 1, 2: 2}
... ]
>>> answer == largest_common_subgraph
True

However, when not taking symmetry into account, it doesn’t matter:

>>> largest_common_subgraph = list(ismags.largest_common_subgraph(symmetry=False))
>>> answer = [
...     {1: 0, 0: 1, 2: 2},
...     {1: 0, 2: 1, 0: 2},
...     {2: 0, 1: 1, 3: 2},
...     {2: 0, 3: 1, 1: 2},
...     {1: 0, 0: 1, 2: 3},
...     {1: 0, 2: 1, 0: 3},
...     {2: 0, 1: 1, 3: 3},
...     {2: 0, 3: 1, 1: 3},
...     {1: 0, 0: 2, 2: 3},
...     {1: 0, 2: 2, 0: 3},
...     {2: 0, 1: 2, 3: 3},
...     {2: 0, 3: 2, 1: 3}
... ]
>>> answer == largest_common_subgraph
True
>>> largest_common_subgraph = list(ismags2.largest_common_subgraph(symmetry=False))
>>> answer = [
...     {1: 0, 0: 1, 2: 2},
...     {1: 0, 0: 1, 3: 2},
...     {2: 0, 0: 1, 1: 2},
...     {2: 0, 0: 1, 3: 2},
...     {3: 0, 0: 1, 1: 2},
...     {3: 0, 0: 1, 2: 2},
...     {1: 1, 0: 2, 2: 3},
...     {1: 1, 0: 2, 3: 3},
...     {2: 1, 0: 2, 1: 3},
...     {2: 1, 0: 2, 3: 3},
...     {3: 1, 0: 2, 1: 3},
...     {3: 1, 0: 2, 2: 3}
... ]
>>> answer == largest_common_subgraph
True

Notes

  • The current implementation works for undirected graphs only. The algorithm in general should work for directed graphs as well though.

  • Node keys for both provided graphs need to be fully orderable as well as hashable.

  • Node and edge equality is assumed to be transitive: if A is equal to B, and B is equal to C, then A is equal to C.

References

1

M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, M. Pickavet, “The Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration”, PLoS One 9(5): e97896, 2014. https://doi.org/10.1371/journal.pone.0097896

2

https://en.wikipedia.org/wiki/Maximum_common_induced_subgraph

ISMAGS object

ISMAGS(graph, subgraph[, node_match, …])

Implements the ISMAGS subgraph matching algorith.

ISMAGS.analyze_symmetry(graph, …)

Find a minimal set of permutations and corresponding co-sets that describe the symmetry of subgraph.

ISMAGS.is_isomorphic([symmetry])

Returns True if graph is isomorphic to subgraph and False otherwise.

ISMAGS.subgraph_is_isomorphic([symmetry])

Returns True if a subgraph of graph is isomorphic to subgraph and False otherwise.

ISMAGS.isomorphisms_iter([symmetry])

Does the same as find_isomorphisms() if graph and subgraph have the same number of nodes.

ISMAGS.subgraph_isomorphisms_iter([symmetry])

Alternative name for find_isomorphisms().

ISMAGS.largest_common_subgraph([symmetry])

Find the largest common induced subgraphs between subgraph and graph.