networkx.algorithms.node_classification.hmn.harmonic_function¶
-
harmonic_function
(G, max_iter=30, label_name='label')[source]¶ Node classification by Harmonic function
- Parameters
G (NetworkX Graph)
max_iter (int) – maximum number of iterations allowed
label_name (string) – name of target labels to predict
- Raises
- Returns
predicted – Array of predicted labels
- Return type
array, shape = [n_samples]
Examples
>>> from networkx.algorithms import node_classification >>> G = nx.path_graph(4) >>> G.nodes[0]['label'] = 'A' >>> G.nodes[3]['label'] = 'B' >>> G.nodes(data=True) NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}}) >>> G.edges() EdgeView([(0, 1), (1, 2), (2, 3)]) >>> predicted = node_classification.harmonic_function(G) >>> predicted ['A', 'A', 'B', 'B']
References
Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August). Semi-supervised learning using gaussian fields and harmonic functions. In ICML (Vol. 3, pp. 912-919).