Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

RcmΒΆ

Cuthill-McKee ordering of matrices

The reverse Cuthill-McKee algorithm gives a sparse matrix ordering that reduces the matrix bandwidth.

Out:

ordering [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2)]
unordered Laplacian matrix
bandwidth: 7
  (0, 0)        2
  (0, 1)        -1
  (0, 3)        -1
  (1, 0)        -1
  (1, 1)        3
  (1, 2)        -1
  (1, 4)        -1
  (2, 1)        -1
  (2, 2)        2
  (2, 5)        -1
  (3, 0)        -1
  (3, 3)        3
  (3, 4)        -1
  (3, 6)        -1
  (4, 1)        -1
  (4, 3)        -1
  (4, 4)        4
  (4, 5)        -1
  (4, 7)        -1
  (5, 2)        -1
  (5, 4)        -1
  (5, 5)        3
  (5, 8)        -1
  (6, 3)        -1
  (6, 6)        2
  (6, 7)        -1
  (7, 4)        -1
  (7, 6)        -1
  (7, 7)        3
  (7, 8)        -1
  (8, 5)        -1
  (8, 7)        -1
  (8, 8)        2
low-bandwidth Laplacian matrix
bandwidth: 7
  (0, 0)        2
  (0, 1)        -1
  (0, 2)        -1
  (1, 0)        -1
  (1, 1)        3
  (1, 3)        -1
  (1, 4)        -1
  (2, 0)        -1
  (2, 2)        3
  (2, 4)        -1
  (2, 5)        -1
  (3, 1)        -1
  (3, 3)        2
  (3, 6)        -1
  (4, 1)        -1
  (4, 2)        -1
  (4, 4)        4
  (4, 6)        -1
  (4, 7)        -1
  (5, 2)        -1
  (5, 5)        2
  (5, 7)        -1
  (6, 3)        -1
  (6, 4)        -1
  (6, 6)        3
  (6, 8)        -1
  (7, 4)        -1
  (7, 5)        -1
  (7, 7)        3
  (7, 8)        -1
  (8, 6)        -1
  (8, 7)        -1
  (8, 8)        2

# Copyright (C) 2011-2019 by
# Author:    Aric Hagberg <aric.hagberg@gmail.com>
# BSD License
import networkx as nx
from networkx.utils import reverse_cuthill_mckee_ordering
import numpy as np

# build low-bandwidth numpy matrix
G = nx.grid_2d_graph(3, 3)
rcm = list(reverse_cuthill_mckee_ordering(G))
print("ordering", rcm)

print("unordered Laplacian matrix")
A = nx.laplacian_matrix(G)
x, y = np.nonzero(A)
#print("lower bandwidth:",(y-x).max())
#print("upper bandwidth:",(x-y).max())
print("bandwidth: %d" % ((y - x).max() + (x - y).max() + 1))
print(A)

B = nx.laplacian_matrix(G, nodelist=rcm)
print("low-bandwidth Laplacian matrix")
x, y = np.nonzero(B)
#print("lower bandwidth:",(y-x).max())
#print("upper bandwidth:",(x-y).max())
print("bandwidth: %d" % ((y - x).max() + (x - y).max() + 1))
print(B)

Total running time of the script: ( 0 minutes 0.061 seconds)

Gallery generated by Sphinx-Gallery