Note
Click here to download the full example code
RcmΒΆ
Cuthill-McKee ordering of matrices
The reverse Cuthill-McKee algorithm gives a sparse matrix ordering that reduces the matrix bandwidth.
Out:
ordering [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2)]
unordered Laplacian matrix
bandwidth: 7
(0, 0) 2
(0, 1) -1
(0, 3) -1
(1, 0) -1
(1, 1) 3
(1, 2) -1
(1, 4) -1
(2, 1) -1
(2, 2) 2
(2, 5) -1
(3, 0) -1
(3, 3) 3
(3, 4) -1
(3, 6) -1
(4, 1) -1
(4, 3) -1
(4, 4) 4
(4, 5) -1
(4, 7) -1
(5, 2) -1
(5, 4) -1
(5, 5) 3
(5, 8) -1
(6, 3) -1
(6, 6) 2
(6, 7) -1
(7, 4) -1
(7, 6) -1
(7, 7) 3
(7, 8) -1
(8, 5) -1
(8, 7) -1
(8, 8) 2
low-bandwidth Laplacian matrix
bandwidth: 7
(0, 0) 2
(0, 1) -1
(0, 2) -1
(1, 0) -1
(1, 1) 3
(1, 3) -1
(1, 4) -1
(2, 0) -1
(2, 2) 3
(2, 4) -1
(2, 5) -1
(3, 1) -1
(3, 3) 2
(3, 6) -1
(4, 1) -1
(4, 2) -1
(4, 4) 4
(4, 6) -1
(4, 7) -1
(5, 2) -1
(5, 5) 2
(5, 7) -1
(6, 3) -1
(6, 4) -1
(6, 6) 3
(6, 8) -1
(7, 4) -1
(7, 5) -1
(7, 7) 3
(7, 8) -1
(8, 6) -1
(8, 7) -1
(8, 8) 2
# Copyright (C) 2011-2019 by
# Author: Aric Hagberg <aric.hagberg@gmail.com>
# BSD License
import networkx as nx
from networkx.utils import reverse_cuthill_mckee_ordering
import numpy as np
# build low-bandwidth numpy matrix
G = nx.grid_2d_graph(3, 3)
rcm = list(reverse_cuthill_mckee_ordering(G))
print("ordering", rcm)
print("unordered Laplacian matrix")
A = nx.laplacian_matrix(G)
x, y = np.nonzero(A)
#print("lower bandwidth:",(y-x).max())
#print("upper bandwidth:",(x-y).max())
print("bandwidth: %d" % ((y - x).max() + (x - y).max() + 1))
print(A)
B = nx.laplacian_matrix(G, nodelist=rcm)
print("low-bandwidth Laplacian matrix")
x, y = np.nonzero(B)
#print("lower bandwidth:",(y-x).max())
#print("upper bandwidth:",(x-y).max())
print("bandwidth: %d" % ((y - x).max() + (x - y).max() + 1))
print(B)
Total running time of the script: ( 0 minutes 0.061 seconds)