# Copyright (C) 2008-2019 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
#
# Authors: Salim Fadhley
# Aric Hagberg (hagberg@lanl.gov)
"""
*******
GraphML
*******
Read and write graphs in GraphML format.
This implementation does not support mixed graphs (directed and unidirected
edges together), hyperedges, nested graphs, or ports.
"GraphML is a comprehensive and easy-to-use file format for graphs. It
consists of a language core to describe the structural properties of a
graph and a flexible extension mechanism to add application-specific
data. Its main features include support of
* directed, undirected, and mixed graphs,
* hypergraphs,
* hierarchical graphs,
* graphical representations,
* references to external data,
* application-specific attribute data, and
* light-weight parsers.
Unlike many other file formats for graphs, GraphML does not use a
custom syntax. Instead, it is based on XML and hence ideally suited as
a common denominator for all kinds of services generating, archiving,
or processing graphs."
http://graphml.graphdrawing.org/
Format
------
GraphML is an XML format. See
http://graphml.graphdrawing.org/specification.html for the specification and
http://graphml.graphdrawing.org/primer/graphml-primer.html
for examples.
"""
import warnings
from collections import defaultdict
try:
from xml.etree.cElementTree import Element, ElementTree
from xml.etree.cElementTree import tostring, fromstring
except ImportError:
try:
from xml.etree.ElementTree import Element, ElementTree
from xml.etree.ElementTree import tostring, fromstring
except ImportError:
pass
try:
import lxml.etree as lxmletree
except ImportError:
lxmletree = None
import networkx as nx
from networkx.utils import open_file, make_str
__all__ = ['write_graphml', 'read_graphml', 'generate_graphml',
'write_graphml_xml', 'write_graphml_lxml',
'parse_graphml', 'GraphMLWriter', 'GraphMLReader']
@open_file(1, mode='wb')
def write_graphml_xml(G, path, encoding='utf-8', prettyprint=True,
infer_numeric_types=False):
"""Write G in GraphML XML format to path
Parameters
----------
G : graph
A networkx graph
path : file or string
File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.
encoding : string (optional)
Encoding for text data.
prettyprint : bool (optional)
If True use line breaks and indenting in output XML.
infer_numeric_types : boolean
Determine if numeric types should be generalized.
For example, if edges have both int and float 'weight' attributes,
we infer in GraphML that both are floats.
Examples
--------
>>> G = nx.path_graph(4)
>>> nx.write_graphml(G, "test.graphml")
Notes
-----
It may be a good idea in Python2 to convert strings to unicode
before giving the graph to write_gml. At least the strings with
either many characters to escape.
This implementation does not support mixed graphs (directed
and unidirected edges together) hyperedges, nested graphs, or ports.
"""
writer = GraphMLWriter(encoding=encoding, prettyprint=prettyprint,
infer_numeric_types=infer_numeric_types)
writer.add_graph_element(G)
writer.dump(path)
@open_file(1, mode='wb')
def write_graphml_lxml(G, path, encoding='utf-8', prettyprint=True,
infer_numeric_types=False):
"""Write G in GraphML XML format to path
This function uses the LXML framework and should be faster than
the version using the xml library.
Parameters
----------
G : graph
A networkx graph
path : file or string
File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.
encoding : string (optional)
Encoding for text data.
prettyprint : bool (optional)
If True use line breaks and indenting in output XML.
infer_numeric_types : boolean
Determine if numeric types should be generalized.
For example, if edges have both int and float 'weight' attributes,
we infer in GraphML that both are floats.
Examples
--------
>>> G = nx.path_graph(4)
>>> nx.write_graphml_lxml(G, "fourpath.graphml") # doctest: +SKIP
Notes
-----
This implementation does not support mixed graphs (directed
and unidirected edges together) hyperedges, nested graphs, or ports.
"""
writer = GraphMLWriterLxml(path, graph=G, encoding=encoding,
prettyprint=prettyprint,
infer_numeric_types=infer_numeric_types)
writer.dump()
[docs]def generate_graphml(G, encoding='utf-8', prettyprint=True):
"""Generate GraphML lines for G
Parameters
----------
G : graph
A networkx graph
encoding : string (optional)
Encoding for text data.
prettyprint : bool (optional)
If True use line breaks and indenting in output XML.
Examples
--------
>>> G = nx.path_graph(4)
>>> linefeed = chr(10) # linefeed = \n
>>> s = linefeed.join(nx.generate_graphml(G)) # doctest: +SKIP
>>> for line in nx.generate_graphml(G): # doctest: +SKIP
... print(line)
Notes
-----
This implementation does not support mixed graphs (directed and unidirected
edges together) hyperedges, nested graphs, or ports.
"""
writer = GraphMLWriter(encoding=encoding, prettyprint=prettyprint)
writer.add_graph_element(G)
for line in str(writer).splitlines():
yield line
[docs]@open_file(0, mode='rb')
def read_graphml(path, node_type=str, edge_key_type=int):
"""Read graph in GraphML format from path.
Parameters
----------
path : file or string
File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.
node_type: Python type (default: str)
Convert node ids to this type
edge_key_type: Python type (default: int)
Convert graphml edge ids to this type as key of multi-edges
Returns
-------
graph: NetworkX graph
If no parallel edges are found a Graph or DiGraph is returned.
Otherwise a MultiGraph or MultiDiGraph is returned.
Notes
-----
Default node and edge attributes are not propagated to each node and edge.
They can be obtained from `G.graph` and applied to node and edge attributes
if desired using something like this:
>>> default_color = G.graph['node_default']['color'] # doctest: +SKIP
>>> for node, data in G.nodes(data=True): # doctest: +SKIP
... if 'color' not in data:
... data['color']=default_color
>>> default_color = G.graph['edge_default']['color'] # doctest: +SKIP
>>> for u, v, data in G.edges(data=True): # doctest: +SKIP
... if 'color' not in data:
... data['color']=default_color
This implementation does not support mixed graphs (directed and unidirected
edges together), hypergraphs, nested graphs, or ports.
For multigraphs the GraphML edge "id" will be used as the edge
key. If not specified then they "key" attribute will be used. If
there is no "key" attribute a default NetworkX multigraph edge key
will be provided.
Files with the yEd "yfiles" extension will can be read but the graphics
information is discarded.
yEd compressed files ("file.graphmlz" extension) can be read by renaming
the file to "file.graphml.gz".
"""
reader = GraphMLReader(node_type=node_type, edge_key_type=edge_key_type)
# need to check for multiple graphs
glist = list(reader(path=path))
if len(glist) == 0:
# If no graph comes back, try looking for an incomplete header
header = b'<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
path.seek(0)
old_bytes = path.read()
new_bytes = old_bytes.replace(b'<graphml>', header)
glist = list(reader(string=new_bytes))
if len(glist) == 0:
raise nx.NetworkXError('file not successfully read as graphml')
return glist[0]
[docs]def parse_graphml(graphml_string, node_type=str):
"""Read graph in GraphML format from string.
Parameters
----------
graphml_string : string
String containing graphml information
(e.g., contents of a graphml file).
node_type: Python type (default: str)
Convert node ids to this type
Returns
-------
graph: NetworkX graph
If no parallel edges are found a Graph or DiGraph is returned.
Otherwise a MultiGraph or MultiDiGraph is returned.
Examples
--------
>>> G = nx.path_graph(4)
>>> linefeed = chr(10) # linefeed = \n
>>> s = linefeed.join(nx.generate_graphml(G))
>>> H = nx.parse_graphml(s)
Notes
-----
Default node and edge attributes are not propagated to each node and edge.
They can be obtained from `G.graph` and applied to node and edge attributes
if desired using something like this:
>>> default_color = G.graph['node_default']['color'] # doctest: +SKIP
>>> for node, data in G.nodes(data=True): # doctest: +SKIP
... if 'color' not in data:
... data['color']=default_color
>>> default_color = G.graph['edge_default']['color'] # doctest: +SKIP
>>> for u, v, data in G.edges(data=True): # doctest: +SKIP
... if 'color' not in data:
... data['color']=default_color
This implementation does not support mixed graphs (directed and unidirected
edges together), hypergraphs, nested graphs, or ports.
For multigraphs the GraphML edge "id" will be used as the edge
key. If not specified then they "key" attribute will be used. If
there is no "key" attribute a default NetworkX multigraph edge key
will be provided.
"""
reader = GraphMLReader(node_type=node_type)
# need to check for multiple graphs
glist = list(reader(string=graphml_string))
if len(glist) == 0:
# If no graph comes back, try looking for an incomplete header
header = '<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
new_string = graphml_string.replace('<graphml>', header)
glist = list(reader(string=new_string))
if len(glist) == 0:
raise nx.NetworkXError('file not successfully read as graphml')
return glist[0]
class GraphML(object):
NS_GRAPHML = "http://graphml.graphdrawing.org/xmlns"
NS_XSI = "http://www.w3.org/2001/XMLSchema-instance"
# xmlns:y="http://www.yworks.com/xml/graphml"
NS_Y = "http://www.yworks.com/xml/graphml"
SCHEMALOCATION = \
' '.join(['http://graphml.graphdrawing.org/xmlns',
'http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd'])
try:
chr(12345) # Fails on Py!=3.
unicode = str # Py3k's str is our unicode type
long = int # Py3K's int is our long type
except ValueError:
# Python 2.x
pass
types = [(int, "integer"), # for Gephi GraphML bug
(str, "yfiles"), (str, "string"), (unicode, "string"),
(int, "int"), (long, "long"),
(float, "float"), (float, "double"),
(bool, "boolean")]
# These additions to types allow writing numpy types
try:
import numpy as np
except:
pass
else:
# prepend so that python types are created upon read (last entry wins)
types = [(np.float64, "float"), (np.float32, "float"),
(np.float16, "float"), (np.float_, "float"),
(np.int, "int"), (np.int8, "int"),
(np.int16, "int"), (np.int32, "int"),
(np.int64, "int"), (np.uint8, "int"),
(np.uint16, "int"), (np.uint32, "int"),
(np.uint64, "int"), (np.int_, "int"),
(np.intc, "int"), (np.intp, "int"),
] + types
xml_type = dict(types)
python_type = dict(reversed(a) for a in types)
# This page says that data types in GraphML follow Java(TM).
# http://graphml.graphdrawing.org/primer/graphml-primer.html#AttributesDefinition
# true and false are the only boolean literals:
# http://en.wikibooks.org/wiki/Java_Programming/Literals#Boolean_Literals
convert_bool = {
# We use data.lower() in actual use.
'true': True, 'false': False,
# Include integer strings for convenience.
'0': False, 0: False,
'1': True, 1: True
}
class GraphMLWriter(GraphML):
def __init__(self, graph=None, encoding="utf-8", prettyprint=True,
infer_numeric_types=False):
try:
import xml.etree.ElementTree
except ImportError:
msg = 'GraphML writer requires xml.elementtree.ElementTree'
raise ImportError(msg)
self.myElement = Element
self.infer_numeric_types = infer_numeric_types
self.prettyprint = prettyprint
self.encoding = encoding
self.xml = self.myElement("graphml",
{'xmlns': self.NS_GRAPHML,
'xmlns:xsi': self.NS_XSI,
'xsi:schemaLocation': self.SCHEMALOCATION})
self.keys = {}
self.attributes = defaultdict(list)
self.attribute_types = defaultdict(set)
if graph is not None:
self.add_graph_element(graph)
def __str__(self):
if self.prettyprint:
self.indent(self.xml)
s = tostring(self.xml).decode(self.encoding)
return s
def attr_type(self, name, scope, value):
"""Infer the attribute type of data named name. Currently this only
supports inference of numeric types.
If self.infer_numeric_types is false, type is used. Otherwise, pick the
most general of types found across all values with name and scope. This
means edges with data named 'weight' are treated separately from nodes
with data named 'weight'.
"""
if self.infer_numeric_types:
types = self.attribute_types[(name, scope)]
try:
chr(12345) # Fails on Py<3.
local_long = int # Py3's int is Py2's long type
local_unicode = str # Py3's str is Py2's unicode type
except ValueError:
# Python 2.x
local_long = long
local_unicode = unicode
if len(types) > 1:
if str in types:
return str
elif local_unicode in types:
return local_unicode
elif float in types:
return float
elif local_long in types:
return local_long
else:
return int
else:
return list(types)[0]
else:
return type(value)
def get_key(self, name, attr_type, scope, default):
keys_key = (name, attr_type, scope)
try:
return self.keys[keys_key]
except KeyError:
new_id = "d%i" % len(list(self.keys))
self.keys[keys_key] = new_id
key_kwargs = {"id": new_id,
"for": scope,
"attr.name": name,
"attr.type": attr_type}
key_element = self.myElement("key", **key_kwargs)
# add subelement for data default value if present
if default is not None:
default_element = self.myElement("default")
default_element.text = make_str(default)
key_element.append(default_element)
self.xml.insert(0, key_element)
return new_id
def add_data(self, name, element_type, value,
scope="all",
default=None):
"""
Make a data element for an edge or a node. Keep a log of the
type in the keys table.
"""
if element_type not in self.xml_type:
msg = 'GraphML writer does not support %s as data values.'
raise nx.NetworkXError(msg % element_type)
keyid = self.get_key(name, self.xml_type[element_type], scope, default)
data_element = self.myElement("data", key=keyid)
data_element.text = make_str(value)
return data_element
def add_attributes(self, scope, xml_obj, data, default):
"""Appends attribute data to edges or nodes, and stores type information
to be added later. See add_graph_element.
"""
for k, v in data.items():
self.attribute_types[(make_str(k), scope)].add(type(v))
self.attributes[xml_obj].append([k, v, scope, default.get(k)])
def add_nodes(self, G, graph_element):
default = G.graph.get('node_default', {})
for node, data in G.nodes(data=True):
node_element = self.myElement("node", id=make_str(node))
self.add_attributes("node", node_element, data, default)
graph_element.append(node_element)
def add_edges(self, G, graph_element):
if G.is_multigraph():
for u, v, key, data in G.edges(data=True, keys=True):
edge_element = self.myElement("edge", source=make_str(u),
target=make_str(v),
id=make_str(key))
default = G.graph.get('edge_default', {})
self.add_attributes("edge", edge_element, data, default)
graph_element.append(edge_element)
else:
for u, v, data in G.edges(data=True):
edge_element = self.myElement("edge", source=make_str(u),
target=make_str(v))
default = G.graph.get('edge_default', {})
self.add_attributes("edge", edge_element, data, default)
graph_element.append(edge_element)
def add_graph_element(self, G):
"""
Serialize graph G in GraphML to the stream.
"""
if G.is_directed():
default_edge_type = 'directed'
else:
default_edge_type = 'undirected'
graphid = G.graph.pop('id', None)
if graphid is None:
graph_element = self.myElement("graph",
edgedefault=default_edge_type)
else:
graph_element = self.myElement("graph",
edgedefault=default_edge_type,
id=graphid)
default = {}
data = {k: v for (k, v) in G.graph.items()
if k not in ['node_default', 'edge_default']}
self.add_attributes("graph", graph_element, data, default)
self.add_nodes(G, graph_element)
self.add_edges(G, graph_element)
# self.attributes contains a mapping from XML Objects to a list of
# data that needs to be added to them.
# We postpone processing in order to do type inference/generalization.
# See self.attr_type
for (xml_obj, data) in self.attributes.items():
for (k, v, scope, default) in data:
xml_obj.append(self.add_data(make_str(k),
self.attr_type(k, scope, v),
make_str(v), scope, default))
self.xml.append(graph_element)
def add_graphs(self, graph_list):
""" Add many graphs to this GraphML document. """
for G in graph_list:
self.add_graph_element(G)
def dump(self, stream):
if self.prettyprint:
self.indent(self.xml)
document = ElementTree(self.xml)
document.write(stream, encoding=self.encoding, xml_declaration=True)
def indent(self, elem, level=0):
# in-place prettyprint formatter
i = "\n" + level * " "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
if not elem.tail or not elem.tail.strip():
elem.tail = i
for elem in elem:
self.indent(elem, level + 1)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i
class IncrementalElement(object):
"""Wrapper for _IncrementalWriter providing an Element like interface.
This wrapper does not intend to be a complete implementation but rather to
deal with those calls used in GraphMLWriter.
"""
def __init__(self, xml, prettyprint):
self.xml = xml
self.prettyprint = prettyprint
def append(self, element):
self.xml.write(element, pretty_print=self.prettyprint)
class GraphMLWriterLxml(GraphMLWriter):
def __init__(self, path, graph=None, encoding='utf-8', prettyprint=True,
infer_numeric_types=False):
self.myElement = lxmletree.Element
self._encoding = encoding
self._prettyprint = prettyprint
self.infer_numeric_types = infer_numeric_types
self._xml_base = lxmletree.xmlfile(path, encoding=encoding)
self._xml = self._xml_base.__enter__()
self._xml.write_declaration()
# We need to have a xml variable that support insertion. This call is
# used for adding the keys to the document.
# We will store those keys in a plain list, and then after the graph
# element is closed we will add them to the main graphml element.
self.xml = []
self._keys = self.xml
self._graphml = self._xml.element(
'graphml',
{
'xmlns': self.NS_GRAPHML,
'xmlns:xsi': self.NS_XSI,
'xsi:schemaLocation': self.SCHEMALOCATION
})
self._graphml.__enter__()
self.keys = {}
self.attribute_types = defaultdict(set)
if graph is not None:
self.add_graph_element(graph)
def add_graph_element(self, G):
"""
Serialize graph G in GraphML to the stream.
"""
if G.is_directed():
default_edge_type = 'directed'
else:
default_edge_type = 'undirected'
graphid = G.graph.pop('id', None)
if graphid is None:
graph_element = self._xml.element('graph',
edgedefault=default_edge_type)
else:
graph_element = self._xml.element('graph',
edgedefault=default_edge_type,
id=graphid)
# gather attributes types for the whole graph
# to find the most general numeric format needed.
# Then pass through attributes to create key_id for each.
graphdata = {k: v for k, v in G.graph.items()
if k not in ('node_default', 'edge_default')}
node_default = G.graph.get('node_default', {})
edge_default = G.graph.get('edge_default', {})
# Graph attributes
for k, v in graphdata.items():
self.attribute_types[(make_str(k), "graph")].add(type(v))
for k, v in graphdata.items():
element_type = self.xml_type[self.attr_type(k, "graph", v)]
self.get_key(make_str(k), element_type, "graph", None)
# Nodes and data
for node, d in G.nodes(data=True):
for k, v in d.items():
self.attribute_types[(make_str(k), "node")].add(type(v))
for node, d in G.nodes(data=True):
for k, v in d.items():
T = self.xml_type[self.attr_type(k, "node", v)]
self.get_key(make_str(k), T, "node", node_default.get(k))
# Edges and data
if G.is_multigraph():
for u, v, ekey, d in G.edges(keys=True, data=True):
for k, v in d.items():
self.attribute_types[(make_str(k), "edge")].add(type(v))
for u, v, ekey, d in G.edges(keys=True, data=True):
for k, v in d.items():
T = self.xml_type[self.attr_type(k, "edge", v)]
self.get_key(make_str(k), T, "edge", edge_default.get(k))
else:
for u, v, d in G.edges(data=True):
for k, v in d.items():
self.attribute_types[(make_str(k), "edge")].add(type(v))
for u, v, d in G.edges(data=True):
for k, v in d.items():
T = self.xml_type[self.attr_type(k, "edge", v)]
self.get_key(make_str(k), T, "edge", edge_default.get(k))
# Now add attribute keys to the xml file
for key in self.xml:
self._xml.write(key, pretty_print=self._prettyprint)
# The incremental_writer writes each node/edge as it is created
incremental_writer = IncrementalElement(self._xml, self._prettyprint)
with graph_element:
self.add_attributes('graph', incremental_writer, graphdata, {})
self.add_nodes(G, incremental_writer) # adds attributes too
self.add_edges(G, incremental_writer) # adds attributes too
def add_attributes(self, scope, xml_obj, data, default):
"""Appends attribute data."""
for k, v in data.items():
data_element = self.add_data(make_str(k),
self.attr_type(make_str(k), scope, v),
make_str(v), scope, default.get(k))
xml_obj.append(data_element)
def __str__(self):
return object.__str__(self)
def dump(self):
self._graphml.__exit__(None, None, None)
self._xml_base.__exit__(None, None, None)
# Choose a writer function for default
if lxmletree is None:
write_graphml = write_graphml_xml
else:
write_graphml = write_graphml_lxml
class GraphMLReader(GraphML):
"""Read a GraphML document. Produces NetworkX graph objects."""
def __init__(self, node_type=str, edge_key_type=int):
try:
import xml.etree.ElementTree
except ImportError:
msg = 'GraphML reader requires xml.elementtree.ElementTree'
raise ImportError(msg)
self.node_type = node_type
self.edge_key_type = edge_key_type
self.multigraph = False # assume multigraph and test for multiedges
self.edge_ids = {} # dict mapping (u,v) tuples to id edge attributes
def __call__(self, path=None, string=None):
if path is not None:
self.xml = ElementTree(file=path)
elif string is not None:
self.xml = fromstring(string)
else:
raise ValueError("Must specify either 'path' or 'string' as kwarg")
(keys, defaults) = self.find_graphml_keys(self.xml)
for g in self.xml.findall("{%s}graph" % self.NS_GRAPHML):
yield self.make_graph(g, keys, defaults)
def make_graph(self, graph_xml, graphml_keys, defaults, G=None):
# set default graph type
edgedefault = graph_xml.get("edgedefault", None)
if G is None:
if edgedefault == 'directed':
G = nx.MultiDiGraph()
else:
G = nx.MultiGraph()
# set defaults for graph attributes
G.graph['node_default'] = {}
G.graph['edge_default'] = {}
for key_id, value in defaults.items():
key_for = graphml_keys[key_id]['for']
name = graphml_keys[key_id]['name']
python_type = graphml_keys[key_id]['type']
if key_for == 'node':
G.graph['node_default'].update({name: python_type(value)})
if key_for == 'edge':
G.graph['edge_default'].update({name: python_type(value)})
# hyperedges are not supported
hyperedge = graph_xml.find("{%s}hyperedge" % self.NS_GRAPHML)
if hyperedge is not None:
raise nx.NetworkXError("GraphML reader doesn't support hyperedges")
# add nodes
for node_xml in graph_xml.findall("{%s}node" % self.NS_GRAPHML):
self.add_node(G, node_xml, graphml_keys, defaults)
# add edges
for edge_xml in graph_xml.findall("{%s}edge" % self.NS_GRAPHML):
self.add_edge(G, edge_xml, graphml_keys)
# add graph data
data = self.decode_data_elements(graphml_keys, graph_xml)
G.graph.update(data)
# switch to Graph or DiGraph if no parallel edges were found.
if not self.multigraph:
if G.is_directed():
G = nx.DiGraph(G)
else:
G = nx.Graph(G)
nx.set_edge_attributes(G, values=self.edge_ids, name='id')
return G
def add_node(self, G, node_xml, graphml_keys, defaults):
"""Add a node to the graph.
"""
# warn on finding unsupported ports tag
ports = node_xml.find("{%s}port" % self.NS_GRAPHML)
if ports is not None:
warnings.warn("GraphML port tag not supported.")
# find the node by id and cast it to the appropriate type
node_id = self.node_type(node_xml.get("id"))
# get data/attributes for node
data = self.decode_data_elements(graphml_keys, node_xml)
G.add_node(node_id, **data)
# get child nodes
if node_xml.attrib.get('yfiles.foldertype') == 'group':
graph_xml = node_xml.find("{%s}graph" % self.NS_GRAPHML)
self.make_graph(graph_xml, graphml_keys, defaults, G)
def add_edge(self, G, edge_element, graphml_keys):
"""Add an edge to the graph.
"""
# warn on finding unsupported ports tag
ports = edge_element.find("{%s}port" % self.NS_GRAPHML)
if ports is not None:
warnings.warn("GraphML port tag not supported.")
# raise error if we find mixed directed and undirected edges
directed = edge_element.get("directed")
if G.is_directed() and directed == 'false':
msg = "directed=false edge found in directed graph."
raise nx.NetworkXError(msg)
if (not G.is_directed()) and directed == 'true':
msg = "directed=true edge found in undirected graph."
raise nx.NetworkXError(msg)
source = self.node_type(edge_element.get("source"))
target = self.node_type(edge_element.get("target"))
data = self.decode_data_elements(graphml_keys, edge_element)
# GraphML stores edge ids as an attribute
# NetworkX uses them as keys in multigraphs too if no key
# attribute is specified
edge_id = edge_element.get("id")
if edge_id:
# self.edge_ids is used by `make_graph` method for non-multigraphs
self.edge_ids[source, target] = edge_id
try:
edge_id = self.edge_key_type(edge_id)
except ValueError: # Could not convert.
pass
else:
edge_id = data.get('key')
if G.has_edge(source, target):
# mark this as a multigraph
self.multigraph = True
# Use add_edges_from to avoid error with add_edge when `'key' in data`
G.add_edges_from([(source, target, edge_id, data)])
def decode_data_elements(self, graphml_keys, obj_xml):
"""Use the key information to decode the data XML if present."""
data = {}
for data_element in obj_xml.findall("{%s}data" % self.NS_GRAPHML):
key = data_element.get("key")
try:
data_name = graphml_keys[key]['name']
data_type = graphml_keys[key]['type']
except KeyError:
raise nx.NetworkXError("Bad GraphML data: no key %s" % key)
text = data_element.text
# assume anything with subelements is a yfiles extension
if text is not None and len(list(data_element)) == 0:
if data_type == bool:
# Ignore cases.
# http://docs.oracle.com/javase/6/docs/api/java/lang/
# Boolean.html#parseBoolean%28java.lang.String%29
data[data_name] = self.convert_bool[text.lower()]
else:
data[data_name] = data_type(text)
elif len(list(data_element)) > 0:
# Assume yfiles as subelements, try to extract node_label
node_label = None
for node_type in ['ShapeNode', 'SVGNode', 'ImageNode']:
pref = "{%s}%s/{%s}" % (self.NS_Y, node_type, self.NS_Y)
geometry = data_element.find("%sGeometry" % pref)
if geometry is not None:
data['x'] = geometry.get('x')
data['y'] = geometry.get('y')
if node_label is None:
node_label = data_element.find("%sNodeLabel" % pref)
if node_label is not None:
data['label'] = node_label.text
# check all the different types of edges avaivable in yEd.
for e in ['PolyLineEdge', 'SplineEdge', 'QuadCurveEdge',
'BezierEdge', 'ArcEdge']:
pref = "{%s}%s/{%s}" % (self.NS_Y, e, self.NS_Y)
edge_label = data_element.find("%sEdgeLabel" % pref)
if edge_label is not None:
break
if edge_label is not None:
data['label'] = edge_label.text
return data
def find_graphml_keys(self, graph_element):
"""Extracts all the keys and key defaults from the xml.
"""
graphml_keys = {}
graphml_key_defaults = {}
for k in graph_element.findall("{%s}key" % self.NS_GRAPHML):
attr_id = k.get("id")
attr_type = k.get('attr.type')
attr_name = k.get("attr.name")
yfiles_type = k.get("yfiles.type")
if yfiles_type is not None:
attr_name = yfiles_type
attr_type = 'yfiles'
if attr_type is None:
attr_type = "string"
warnings.warn("No key type for id %s. Using string" % attr_id)
if attr_name is None:
raise nx.NetworkXError("Unknown key for id %s." % attr_id)
graphml_keys[attr_id] = {"name": attr_name,
"type": self.python_type[attr_type],
"for": k.get("for")}
# check for "default" subelement of key element
default = k.find("{%s}default" % self.NS_GRAPHML)
if default is not None:
graphml_key_defaults[attr_id] = default.text
return graphml_keys, graphml_key_defaults
# fixture for pytest
def setup_module(module):
import pytest
xml.etree.ElementTree = pytest.importorskip('xml.etree.ElementTree')
# fixture for pytest
def teardown_module(module):
import os
try:
os.unlink('test.graphml')
except:
pass