Note
Click here to download the full example code
Erdos Renyi¶
Create an G{n,m} random graph with n nodes and m edges and report some properties.
This graph is sometimes called the Erdős-Rényi graph but is different from G{n,p} or binomial_graph which is also sometimes called the Erdős-Rényi graph.
Out:
node degree clustering
0 5 0.700000
1 1 0.000000
2 3 1.000000
3 3 0.666667
4 3 0.333333
5 7 0.428571
6 4 0.666667
7 3 0.333333
8 4 0.833333
9 7 0.333333
0 9 8 6 5 2
1 9
2 9 5
3 9 5 4
4 7 9
5 7 6 9 8
6 7 8
7
8 9
9
# Author: Aric Hagberg (hagberg@lanl.gov)
# Copyright (C) 2004-2019 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
import matplotlib.pyplot as plt
from networkx import nx
n = 10 # 10 nodes
m = 20 # 20 edges
G = nx.gnm_random_graph(n, m)
# some properties
print("node degree clustering")
for v in nx.nodes(G):
print('%s %d %f' % (v, nx.degree(G, v), nx.clustering(G, v)))
# print the adjacency list
for line in nx.generate_adjlist(G):
print(line)
nx.draw(G)
plt.show()
Total running time of the script: ( 0 minutes 0.126 seconds)