Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

networkx.algorithms.traversal.edgebfs.edge_bfs

edge_bfs(G, source=None, orientation=None)[source]

A directed, breadth-first-search of edges in G, beginning at source.

Yield the edges of G in a breadth-first-search order continuing until all edges are generated.

Parameters:
  • G (graph) – A directed/undirected graph/multigraph.
  • source (node, list of nodes) – The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched.
  • orientation (None | ‘original’ | ‘reverse’ | ‘ignore’ (default: None)) – For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to ‘reverse’ every edge is traversed in the reverse direction. When set to ‘ignore’, every edge is treated as undirected. When set to ‘original’, every edge is treated as directed. In all three cases, the yielded edge tuples add a last entry to indicate the direction in which that edge was traversed. If orientation is None, the yielded edge has no direction indicated. The direction is respected, but not reported.
Yields:

edge (directed edge) – A directed edge indicating the path taken by the breadth-first-search. For graphs, edge is of the form (u, v) where u and v are the tail and head of the edge as determined by the traversal. For multigraphs, edge is of the form (u, v, key), where key is the key of the edge. When the graph is directed, then u and v are always in the order of the actual directed edge. If orientation is not None then the edge tuple is extended to include the direction of traversal (‘forward’ or ‘reverse’) on that edge.

Examples

>>> import networkx as nx
>>> nodes = [0, 1, 2, 3]
>>> edges = [(0, 1), (1, 0), (1, 0), (2, 0), (2, 1), (3, 1)]
>>> list(nx.edge_bfs(nx.Graph(edges), nodes))
[(0, 1), (0, 2), (1, 2), (1, 3)]
>>> list(nx.edge_bfs(nx.DiGraph(edges), nodes))
[(0, 1), (1, 0), (2, 0), (2, 1), (3, 1)]
>>> list(nx.edge_bfs(nx.MultiGraph(edges), nodes))
[(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (1, 2, 0), (1, 3, 0)]
>>> list(nx.edge_bfs(nx.MultiDiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 0, 0), (2, 1, 0), (3, 1, 0)]
>>> list(nx.edge_bfs(nx.DiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 'forward'), (1, 0, 'reverse'), (2, 0, 'reverse'), (2, 1, 'reverse'), (3, 1, 'reverse')]
>>> list(nx.edge_bfs(nx.MultiDiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 0, 'forward'), (1, 0, 0, 'reverse'), (1, 0, 1, 'reverse'), (2, 0, 0, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 0, 'reverse')]

Notes

The goal of this function is to visit edges. It differs from the more familiar breadth-first-search of nodes, as provided by networkx.algorithms.traversal.breadth_first_search.bfs_edges(), in that it does not stop once every node has been visited. In a directed graph with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited if not for the functionality provided by this function.

See also

bfs_edges(), bfs_tree(), edge_dfs()