# Copyright (C) 2004-2018 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
#
# Author: Aric Hagberg (hagberg@lanl.gov)
"""
**********
Matplotlib
**********
Draw networks with matplotlib.
See Also
--------
matplotlib: http://matplotlib.org/
pygraphviz: http://pygraphviz.github.io/
"""
import networkx as nx
from networkx.utils import is_string_like
from networkx.drawing.layout import shell_layout, \
circular_layout, kamada_kawai_layout, spectral_layout, \
spring_layout, random_layout
__all__ = ['draw',
'draw_networkx',
'draw_networkx_nodes',
'draw_networkx_edges',
'draw_networkx_labels',
'draw_networkx_edge_labels',
'draw_circular',
'draw_kamada_kawai',
'draw_random',
'draw_spectral',
'draw_spring',
'draw_shell']
[docs]def draw(G, pos=None, ax=None, **kwds):
"""Draw the graph G with Matplotlib.
Draw the graph as a simple representation with no node
labels or edge labels and using the full Matplotlib figure area
and no axis labels by default. See draw_networkx() for more
full-featured drawing that allows title, axis labels etc.
Parameters
----------
G : graph
A networkx graph
pos : dictionary, optional
A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See :py:mod:`networkx.drawing.layout` for functions that
compute node positions.
ax : Matplotlib Axes object, optional
Draw the graph in specified Matplotlib axes.
kwds : optional keywords
See networkx.draw_networkx() for a description of optional keywords.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout
See Also
--------
draw_networkx()
draw_networkx_nodes()
draw_networkx_edges()
draw_networkx_labels()
draw_networkx_edge_labels()
Notes
-----
This function has the same name as pylab.draw and pyplot.draw
so beware when using
>>> from networkx import *
since you might overwrite the pylab.draw function.
With pyplot use
>>> import matplotlib.pyplot as plt
>>> import networkx as nx
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G) # networkx draw()
>>> plt.draw() # pyplot draw()
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
"""
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError("Matplotlib required for draw()")
except RuntimeError:
print("Matplotlib unable to open display")
raise
if ax is None:
cf = plt.gcf()
else:
cf = ax.get_figure()
cf.set_facecolor('w')
if ax is None:
if cf._axstack() is None:
ax = cf.add_axes((0, 0, 1, 1))
else:
ax = cf.gca()
if 'with_labels' not in kwds:
kwds['with_labels'] = 'labels' in kwds
try:
draw_networkx(G, pos=pos, ax=ax, **kwds)
ax.set_axis_off()
plt.draw_if_interactive()
except:
raise
return
[docs]def draw_networkx(G, pos=None, arrows=True, with_labels=True, **kwds):
"""Draw the graph G using Matplotlib.
Draw the graph with Matplotlib with options for node positions,
labeling, titles, and many other drawing features.
See draw() for simple drawing without labels or axes.
Parameters
----------
G : graph
A networkx graph
pos : dictionary, optional
A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See :py:mod:`networkx.drawing.layout` for functions that
compute node positions.
arrows : bool, optional (default=True)
For directed graphs, if True draw arrowheads.
Note: Arrows will be the same color as edges.
arrowstyle : str, optional (default='-|>')
For directed graphs, choose the style of the arrowsheads.
See :py:class: `matplotlib.patches.ArrowStyle` for more
options.
arrowsize : int, optional (default=10)
For directed graphs, choose the size of the arrow head head's length and
width. See :py:class: `matplotlib.patches.FancyArrowPatch` for attribute
`mutation_scale` for more info.
with_labels : bool, optional (default=True)
Set to True to draw labels on the nodes.
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
nodelist : list, optional (default G.nodes())
Draw only specified nodes
edgelist : list, optional (default=G.edges())
Draw only specified edges
node_size : scalar or array, optional (default=300)
Size of nodes. If an array is specified it must be the
same length as nodelist.
node_color : color string, or array of floats, (default='r')
Node color. Can be a single color format string,
or a sequence of colors with the same length as nodelist.
If numeric values are specified they will be mapped to
colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.
node_shape : string, optional (default='o')
The shape of the node. Specification is as matplotlib.scatter
marker, one of 'so^>v<dph8'.
alpha : float, optional (default=1.0)
The node and edge transparency
cmap : Matplotlib colormap, optional (default=None)
Colormap for mapping intensities of nodes
vmin,vmax : float, optional (default=None)
Minimum and maximum for node colormap scaling
linewidths : [None | scalar | sequence]
Line width of symbol border (default =1.0)
width : float, optional (default=1.0)
Line width of edges
edge_color : color string, or array of floats (default='r')
Edge color. Can be a single color format string,
or a sequence of colors with the same length as edgelist.
If numeric values are specified they will be mapped to
colors using the edge_cmap and edge_vmin,edge_vmax parameters.
edge_cmap : Matplotlib colormap, optional (default=None)
Colormap for mapping intensities of edges
edge_vmin,edge_vmax : floats, optional (default=None)
Minimum and maximum for edge colormap scaling
style : string, optional (default='solid')
Edge line style (solid|dashed|dotted,dashdot)
labels : dictionary, optional (default=None)
Node labels in a dictionary keyed by node of text labels
font_size : int, optional (default=12)
Font size for text labels
font_color : string, optional (default='k' black)
Font color string
font_weight : string, optional (default='normal')
Font weight
font_family : string, optional (default='sans-serif')
Font family
label : string, optional
Label for graph legend
Notes
-----
For directed graphs, arrows are drawn at the head end. Arrows can be
turned off with keyword arrows=False.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout
>>> import matplotlib.pyplot as plt
>>> limits = plt.axis('off') # turn of axis
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw()
draw_networkx_nodes()
draw_networkx_edges()
draw_networkx_labels()
draw_networkx_edge_labels()
"""
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError("Matplotlib required for draw()")
except RuntimeError:
print("Matplotlib unable to open display")
raise
if pos is None:
pos = nx.drawing.spring_layout(G) # default to spring layout
node_collection = draw_networkx_nodes(G, pos, **kwds)
edge_collection = draw_networkx_edges(G, pos, arrows=arrows, **kwds)
if with_labels:
draw_networkx_labels(G, pos, **kwds)
plt.draw_if_interactive()
[docs]def draw_networkx_nodes(G, pos,
nodelist=None,
node_size=300,
node_color='r',
node_shape='o',
alpha=1.0,
cmap=None,
vmin=None,
vmax=None,
ax=None,
linewidths=None,
edgecolors=None,
label=None,
**kwds):
"""Draw the nodes of the graph G.
This draws only the nodes of the graph G.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
nodelist : list, optional
Draw only specified nodes (default G.nodes())
node_size : scalar or array
Size of nodes (default=300). If an array is specified it must be the
same length as nodelist.
node_color : color string, or array of floats
Node color. Can be a single color format string (default='r'),
or a sequence of colors with the same length as nodelist.
If numeric values are specified they will be mapped to
colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.
node_shape : string
The shape of the node. Specification is as matplotlib.scatter
marker, one of 'so^>v<dph8' (default='o').
alpha : float or array of floats
The node transparency. This can be a single alpha value (default=1.0),
in which case it will be applied to all the nodes of color. Otherwise,
if it is an array, the elements of alpha will be applied to the colors
in order (cycling through alpha multiple times if necessary).
cmap : Matplotlib colormap
Colormap for mapping intensities of nodes (default=None)
vmin,vmax : floats
Minimum and maximum for node colormap scaling (default=None)
linewidths : [None | scalar | sequence]
Line width of symbol border (default =1.0)
edgecolors : [None | scalar | sequence]
Colors of node borders (default = node_color)
label : [None| string]
Label for legend
Returns
-------
matplotlib.collections.PathCollection
`PathCollection` of the nodes.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G))
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw()
draw_networkx()
draw_networkx_edges()
draw_networkx_labels()
draw_networkx_edge_labels()
"""
import collections
try:
import matplotlib.pyplot as plt
import numpy as np
except ImportError:
raise ImportError("Matplotlib required for draw()")
except RuntimeError:
print("Matplotlib unable to open display")
raise
if ax is None:
ax = plt.gca()
if nodelist is None:
nodelist = list(G)
if not nodelist or len(nodelist) == 0: # empty nodelist, no drawing
return None
try:
xy = np.asarray([pos[v] for v in nodelist])
except KeyError as e:
raise nx.NetworkXError('Node %s has no position.' % e)
except ValueError:
raise nx.NetworkXError('Bad value in node positions.')
if isinstance(alpha, collections.Iterable):
node_color = apply_alpha(node_color, alpha, nodelist, cmap, vmin, vmax)
alpha = None
node_collection = ax.scatter(xy[:, 0], xy[:, 1],
s=node_size,
c=node_color,
marker=node_shape,
cmap=cmap,
vmin=vmin,
vmax=vmax,
alpha=alpha,
linewidths=linewidths,
edgecolors=edgecolors,
label=label)
node_collection.set_zorder(2)
return node_collection
[docs]def draw_networkx_edges(G, pos,
edgelist=None,
width=1.0,
edge_color='k',
style='solid',
alpha=1.0,
arrowstyle='-|>',
arrowsize=10,
edge_cmap=None,
edge_vmin=None,
edge_vmax=None,
ax=None,
arrows=True,
label=None,
node_size=300,
nodelist=None,
node_shape="o",
**kwds):
"""Draw the edges of the graph G.
This draws only the edges of the graph G.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
edgelist : collection of edge tuples
Draw only specified edges(default=G.edges())
width : float, or array of floats
Line width of edges (default=1.0)
edge_color : color string, or array of floats
Edge color. Can be a single color format string (default='r'),
or a sequence of colors with the same length as edgelist.
If numeric values are specified they will be mapped to
colors using the edge_cmap and edge_vmin,edge_vmax parameters.
style : string
Edge line style (default='solid') (solid|dashed|dotted,dashdot)
alpha : float
The edge transparency (default=1.0)
edge_ cmap : Matplotlib colormap
Colormap for mapping intensities of edges (default=None)
edge_vmin,edge_vmax : floats
Minimum and maximum for edge colormap scaling (default=None)
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
arrows : bool, optional (default=True)
For directed graphs, if True draw arrowheads.
Note: Arrows will be the same color as edges.
arrowstyle : str, optional (default='-|>')
For directed graphs, choose the style of the arrow heads.
See :py:class: `matplotlib.patches.ArrowStyle` for more
options.
arrowsize : int, optional (default=10)
For directed graphs, choose the size of the arrow head head's length and
width. See :py:class: `matplotlib.patches.FancyArrowPatch` for attribute
`mutation_scale` for more info.
label : [None| string]
Label for legend
Returns
-------
matplotlib.collection.LineCollection
`LineCollection` of the edges
list of matplotlib.patches.FancyArrowPatch
`FancyArrowPatch` instances of the directed edges
Depending whether the drawing includes arrows or not.
Notes
-----
For directed graphs, arrows are drawn at the head end. Arrows can be
turned off with keyword arrows=False. Be sure to include `node_size` as a
keyword argument; arrows are drawn considering the size of nodes.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> edges = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2), (1, 3), (2, 3)])
>>> arcs = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
>>> alphas = [0.3, 0.4, 0.5]
>>> for i, arc in enumerate(arcs): # change alpha values of arcs
... arc.set_alpha(alphas[i])
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw()
draw_networkx()
draw_networkx_nodes()
draw_networkx_labels()
draw_networkx_edge_labels()
"""
try:
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cbook as cb
from matplotlib.colors import colorConverter, Colormap, Normalize
from matplotlib.collections import LineCollection
from matplotlib.patches import FancyArrowPatch
import numpy as np
except ImportError:
raise ImportError("Matplotlib required for draw()")
except RuntimeError:
print("Matplotlib unable to open display")
raise
if ax is None:
ax = plt.gca()
if edgelist is None:
edgelist = list(G.edges())
if not edgelist or len(edgelist) == 0: # no edges!
return None
if nodelist is None:
nodelist = list(G.nodes())
# set edge positions
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist])
if not cb.iterable(width):
lw = (width,)
else:
lw = width
if not is_string_like(edge_color) \
and cb.iterable(edge_color) \
and len(edge_color) == len(edge_pos):
if np.alltrue([is_string_like(c) for c in edge_color]):
# (should check ALL elements)
# list of color letters such as ['k','r','k',...]
edge_colors = tuple([colorConverter.to_rgba(c, alpha)
for c in edge_color])
elif np.alltrue([not is_string_like(c) for c in edge_color]):
# If color specs are given as (rgb) or (rgba) tuples, we're OK
if np.alltrue([cb.iterable(c) and len(c) in (3, 4)
for c in edge_color]):
edge_colors = tuple(edge_color)
else:
# numbers (which are going to be mapped with a colormap)
edge_colors = None
else:
raise ValueError('edge_color must contain color names or numbers')
else:
if is_string_like(edge_color) or len(edge_color) == 1:
edge_colors = (colorConverter.to_rgba(edge_color, alpha), )
else:
msg = 'edge_color must be a color or list of one color per edge'
raise ValueError(msg)
if (not G.is_directed() or not arrows):
edge_collection = LineCollection(edge_pos,
colors=edge_colors,
linewidths=lw,
antialiaseds=(1,),
linestyle=style,
transOffset=ax.transData,
)
edge_collection.set_zorder(1) # edges go behind nodes
edge_collection.set_label(label)
ax.add_collection(edge_collection)
# Note: there was a bug in mpl regarding the handling of alpha values
# for each line in a LineCollection. It was fixed in matplotlib by
# r7184 and r7189 (June 6 2009). We should then not set the alpha
# value globally, since the user can instead provide per-edge alphas
# now. Only set it globally if provided as a scalar.
if cb.is_numlike(alpha):
edge_collection.set_alpha(alpha)
if edge_colors is None:
if edge_cmap is not None:
assert(isinstance(edge_cmap, Colormap))
edge_collection.set_array(np.asarray(edge_color))
edge_collection.set_cmap(edge_cmap)
if edge_vmin is not None or edge_vmax is not None:
edge_collection.set_clim(edge_vmin, edge_vmax)
else:
edge_collection.autoscale()
return edge_collection
arrow_collection = None
if G.is_directed() and arrows:
# Note: Waiting for someone to implement arrow to intersection with
# marker. Meanwhile, this works well for polygons with more than 4
# sides and circle.
def to_marker_edge(marker_size, marker):
if marker in "s^>v<d": # `large` markers need extra space
return np.sqrt(2 * marker_size) / 2
else:
return np.sqrt(marker_size) / 2
# Draw arrows with `matplotlib.patches.FancyarrowPatch`
arrow_collection = []
mutation_scale = arrowsize # scale factor of arrow head
arrow_colors = edge_colors
if arrow_colors is None:
if edge_cmap is not None:
assert(isinstance(edge_cmap, Colormap))
else:
edge_cmap = plt.get_cmap() # default matplotlib colormap
if edge_vmin is None:
edge_vmin = min(edge_color)
if edge_vmax is None:
edge_vmax = max(edge_color)
color_normal = Normalize(vmin=edge_vmin, vmax=edge_vmax)
for i, (src, dst) in enumerate(edge_pos):
x1, y1 = src
x2, y2 = dst
arrow_color = None
line_width = None
shrink_source = 0 # space from source to tail
shrink_target = 0 # space from head to target
if cb.iterable(node_size): # many node sizes
src_node, dst_node = edgelist[i]
index_node = nodelist.index(dst_node)
marker_size = node_size[index_node]
shrink_target = to_marker_edge(marker_size, node_shape)
else:
shrink_target = to_marker_edge(node_size, node_shape)
if arrow_colors is None:
arrow_color = edge_cmap(color_normal(edge_color[i]))
elif len(arrow_colors) > 1:
arrow_color = arrow_colors[i]
else:
arrow_color = arrow_colors[0]
if len(lw) > 1:
line_width = lw[i]
else:
line_width = lw[0]
arrow = FancyArrowPatch((x1, y1), (x2, y2),
arrowstyle=arrowstyle,
shrinkA=shrink_source,
shrinkB=shrink_target,
mutation_scale=mutation_scale,
color=arrow_color,
linewidth=line_width,
zorder=1) # arrows go behind nodes
# There seems to be a bug in matplotlib to make collections of
# FancyArrowPatch instances. Until fixed, the patches are added
# individually to the axes instance.
arrow_collection.append(arrow)
ax.add_patch(arrow)
# update view
minx = np.amin(np.ravel(edge_pos[:, :, 0]))
maxx = np.amax(np.ravel(edge_pos[:, :, 0]))
miny = np.amin(np.ravel(edge_pos[:, :, 1]))
maxy = np.amax(np.ravel(edge_pos[:, :, 1]))
w = maxx - minx
h = maxy - miny
padx, pady = 0.05 * w, 0.05 * h
corners = (minx - padx, miny - pady), (maxx + padx, maxy + pady)
ax.update_datalim(corners)
ax.autoscale_view()
return arrow_collection
[docs]def draw_networkx_labels(G, pos,
labels=None,
font_size=12,
font_color='k',
font_family='sans-serif',
font_weight='normal',
alpha=1.0,
bbox=None,
ax=None,
**kwds):
"""Draw node labels on the graph G.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
labels : dictionary, optional (default=None)
Node labels in a dictionary keyed by node of text labels
Node-keys in labels should appear as keys in `pos`.
If needed use: `{n:lab for n,lab in labels.items() if n in pos}`
font_size : int
Font size for text labels (default=12)
font_color : string
Font color string (default='k' black)
font_family : string
Font family (default='sans-serif')
font_weight : string
Font weight (default='normal')
alpha : float
The text transparency (default=1.0)
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
Returns
-------
dict
`dict` of labels keyed on the nodes
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> labels = nx.draw_networkx_labels(G, pos=nx.spring_layout(G))
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw()
draw_networkx()
draw_networkx_nodes()
draw_networkx_edges()
draw_networkx_edge_labels()
"""
try:
import matplotlib.pyplot as plt
import matplotlib.cbook as cb
except ImportError:
raise ImportError("Matplotlib required for draw()")
except RuntimeError:
print("Matplotlib unable to open display")
raise
if ax is None:
ax = plt.gca()
if labels is None:
labels = dict((n, n) for n in G.nodes())
# set optional alignment
horizontalalignment = kwds.get('horizontalalignment', 'center')
verticalalignment = kwds.get('verticalalignment', 'center')
text_items = {} # there is no text collection so we'll fake one
for n, label in labels.items():
(x, y) = pos[n]
if not is_string_like(label):
label = str(label) # this makes "1" and 1 labeled the same
t = ax.text(x, y,
label,
size=font_size,
color=font_color,
family=font_family,
weight=font_weight,
alpha=alpha,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
transform=ax.transData,
bbox=bbox,
clip_on=True,
)
text_items[n] = t
return text_items
[docs]def draw_networkx_edge_labels(G, pos,
edge_labels=None,
label_pos=0.5,
font_size=10,
font_color='k',
font_family='sans-serif',
font_weight='normal',
alpha=1.0,
bbox=None,
ax=None,
rotate=True,
**kwds):
"""Draw edge labels.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
alpha : float
The text transparency (default=1.0)
edge_labels : dictionary
Edge labels in a dictionary keyed by edge two-tuple of text
labels (default=None). Only labels for the keys in the dictionary
are drawn.
label_pos : float
Position of edge label along edge (0=head, 0.5=center, 1=tail)
font_size : int
Font size for text labels (default=12)
font_color : string
Font color string (default='k' black)
font_weight : string
Font weight (default='normal')
font_family : string
Font family (default='sans-serif')
bbox : Matplotlib bbox
Specify text box shape and colors.
clip_on : bool
Turn on clipping at axis boundaries (default=True)
Returns
-------
dict
`dict` of labels keyed on the edges
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> edge_labels = nx.draw_networkx_edge_labels(G, pos=nx.spring_layout(G))
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw()
draw_networkx()
draw_networkx_nodes()
draw_networkx_edges()
draw_networkx_labels()
"""
try:
import matplotlib.pyplot as plt
import numpy as np
except ImportError:
raise ImportError("Matplotlib required for draw()")
except RuntimeError:
print("Matplotlib unable to open display")
raise
if ax is None:
ax = plt.gca()
if edge_labels is None:
labels = {(u, v): d for u, v, d in G.edges(data=True)}
else:
labels = edge_labels
text_items = {}
for (n1, n2), label in labels.items():
(x1, y1) = pos[n1]
(x2, y2) = pos[n2]
(x, y) = (x1 * label_pos + x2 * (1.0 - label_pos),
y1 * label_pos + y2 * (1.0 - label_pos))
if rotate:
# in degrees
angle = np.arctan2(y2 - y1, x2 - x1) / (2.0 * np.pi) * 360
# make label orientation "right-side-up"
if angle > 90:
angle -= 180
if angle < - 90:
angle += 180
# transform data coordinate angle to screen coordinate angle
xy = np.array((x, y))
trans_angle = ax.transData.transform_angles(np.array((angle,)),
xy.reshape((1, 2)))[0]
else:
trans_angle = 0.0
# use default box of white with white border
if bbox is None:
bbox = dict(boxstyle='round',
ec=(1.0, 1.0, 1.0),
fc=(1.0, 1.0, 1.0),
)
if not is_string_like(label):
label = str(label) # this makes "1" and 1 labeled the same
# set optional alignment
horizontalalignment = kwds.get('horizontalalignment', 'center')
verticalalignment = kwds.get('verticalalignment', 'center')
t = ax.text(x, y,
label,
size=font_size,
color=font_color,
family=font_family,
weight=font_weight,
alpha=alpha,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
rotation=trans_angle,
transform=ax.transData,
bbox=bbox,
zorder=1,
clip_on=True,
)
text_items[(n1, n2)] = t
return text_items
[docs]def draw_circular(G, **kwargs):
"""Draw the graph G with a circular layout.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.
"""
draw(G, circular_layout(G), **kwargs)
[docs]def draw_kamada_kawai(G, **kwargs):
"""Draw the graph G with a Kamada-Kawai force-directed layout.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.
"""
draw(G, kamada_kawai_layout(G), **kwargs)
[docs]def draw_random(G, **kwargs):
"""Draw the graph G with a random layout.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.
"""
draw(G, random_layout(G), **kwargs)
[docs]def draw_spectral(G, **kwargs):
"""Draw the graph G with a spectral layout.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.
"""
draw(G, spectral_layout(G), **kwargs)
[docs]def draw_spring(G, **kwargs):
"""Draw the graph G with a spring layout.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.
"""
draw(G, spring_layout(G), **kwargs)
[docs]def draw_shell(G, **kwargs):
"""Draw networkx graph with shell layout.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.
"""
nlist = kwargs.get('nlist', None)
if nlist is not None:
del(kwargs['nlist'])
draw(G, shell_layout(G, nlist=nlist), **kwargs)
def apply_alpha(colors, alpha, elem_list, cmap=None, vmin=None, vmax=None):
"""Apply an alpha (or list of alphas) to the colors provided.
Parameters
----------
colors : color string, or array of floats
Color of element. Can be a single color format string (default='r'),
or a sequence of colors with the same length as nodelist.
If numeric values are specified they will be mapped to
colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.
alpha : float or array of floats
Alpha values for elements. This can be a single alpha value, in
which case it will be applied to all the elements of color. Otherwise,
if it is an array, the elements of alpha will be applied to the colors
in order (cycling through alpha multiple times if necessary).
elem_list : array of networkx objects
The list of elements which are being colored. These could be nodes,
edges or labels.
cmap : matplotlib colormap
Color map for use if colors is a list of floats corresponding to points
on a color mapping.
vmin, vmax : float
Minimum and maximum values for normalizing colors if a color mapping is
used.
Returns
-------
rgba_colors : numpy ndarray
Array containing RGBA format values for each of the node colours.
"""
import numbers
from itertools import islice, cycle
try:
import numpy as np
from matplotlib.colors import colorConverter
import matplotlib.cm as cm
except ImportError:
raise ImportError("Matplotlib required for draw()")
# If we have been provided with a list of numbers as long as elem_list,
# apply the color mapping.
if len(colors) == len(elem_list) and isinstance(colors[0], numbers.Number):
mapper = cm.ScalarMappable(cmap=cmap)
mapper.set_clim(vmin, vmax)
rgba_colors = mapper.to_rgba(colors)
# Otherwise, convert colors to matplotlib's RGB using the colorConverter
# object. These are converted to numpy ndarrays to be consistent with the
# to_rgba method of ScalarMappable.
else:
try:
rgba_colors = np.array([colorConverter.to_rgba(colors)])
except ValueError:
rgba_colors = np.array([colorConverter.to_rgba(color)
for color in colors])
# Set the final column of the rgba_colors to have the relevant alpha values
try:
# If alpha is longer than the number of colors, resize to the number of
# elements. Also, if rgba_colors.size (the number of elements of
# rgba_colors) is the same as the number of elements, resize the array,
# to avoid it being interpreted as a colormap by scatter()
if len(alpha) > len(rgba_colors) or rgba_colors.size == len(elem_list):
rgba_colors.resize((len(elem_list), 4))
rgba_colors[1:, 0] = rgba_colors[0, 0]
rgba_colors[1:, 1] = rgba_colors[0, 1]
rgba_colors[1:, 2] = rgba_colors[0, 2]
rgba_colors[:, 3] = list(islice(cycle(alpha), len(rgba_colors)))
except TypeError:
rgba_colors[:, -1] = alpha
return rgba_colors
# fixture for nose tests
def setup_module(module):
from nose import SkipTest
try:
import matplotlib as mpl
mpl.use('PS', warn=False)
import matplotlib.pyplot as plt
except:
raise SkipTest("matplotlib not available")