Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

networkx.MultiGraph.nodes

MultiGraph.nodes

A NodeView of the Graph as G.nodes or G.nodes().

Can be used as G.nodes for data lookup and for set-like operations. Can also be used as G.nodes(data='color', default=None) to return a NodeDataView which reports specific node data but no set operations. It presents a dict-like interface as well with G.nodes.items() iterating over (node, nodedata) 2-tuples and G.nodes[3]['foo'] providing the value of the foo attribute for node 3. In addition, a view G.nodes.data('foo') provides a dict-like interface to the foo attribute of each node. G.nodes.data('foo', default=1) provides a default for nodes that do not have attribute foo.

Parameters:
  • data (string or bool, optional (default=False)) – The node attribute returned in 2-tuple (n, ddict[data]). If True, return entire node attribute dict as (n, ddict). If False, return just the nodes n.
  • default (value, optional (default=None)) – Value used for nodes that dont have the requested attribute. Only relevant if data is not True or False.
Returns:

Allows set-like operations over the nodes as well as node attribute dict lookup and calling to get a NodeDataView. A NodeDataView iterates over (n, data) and has no set operations. A NodeView iterates over n and includes set operations.

When called, if data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary.

Return type:

NodeView

Notes

If your node data is not needed, it is simpler and equivalent to use the expression for n in G, or list(G).

Examples

There are two simple ways of getting a list of all nodes in the graph:

>>> G = nx.path_graph(3)
>>> list(G.nodes)
[0, 1, 2]
>>> list(G)
[0, 1, 2]

To get the node data along with the nodes:

>>> G.add_node(1, time='5pm')
>>> G.nodes[0]['foo'] = 'bar'
>>> list(G.nodes(data=True))
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes.data())
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes(data='foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes.data('foo'))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes(data='time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes.data('time'))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes(data='time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
>>> list(G.nodes.data('time', default='Not Available'))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None:

>>> G = nx.Graph()
>>> G.add_node(0)
>>> G.add_node(1, weight=2)
>>> G.add_node(2, weight=3)
>>> dict(G.nodes(data='weight', default=1))
{0: 1, 1: 2, 2: 3}