Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

Source code for networkx.generators.geometric

# -*- coding: utf-8 -*-
#    Copyright (C) 2004-2017 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
#
# Authors: Aric Hagberg (hagberg@lanl.gov)
#          Dan Schult (dschult@colgate.edu)
#          Ben Edwards (BJEdwards@gmail.com)
#          Arya McCarthy (admccarthy@smu.edu)
"""Generators for geometric graphs.
"""
from __future__ import division

from bisect import bisect_left
from itertools import combinations
from itertools import product
from math import sqrt
import math
import random
from random import uniform
try:
    from scipy.spatial import cKDTree as KDTree
except ImportError:
    _is_scipy_available = False
else:
    _is_scipy_available = True

import networkx as nx
from networkx.utils import nodes_or_number

__all__ = ['geographical_threshold_graph', 'waxman_graph',
           'navigable_small_world_graph', 'random_geometric_graph']


def euclidean(x, y):
    """Returns the Euclidean distance between the vectors ``x`` and ``y``.

    Each of ``x`` and ``y`` can be any iterable of numbers. The
    iterables must be of the same length.

    """
    return sqrt(sum((a - b) ** 2 for a, b in zip(x, y)))


def _fast_construct_edges(G, radius, p):
    """Construct edges for random geometric graph.

    Requires scipy to be installed.
    """
    pos = nx.get_node_attributes(G, 'pos')
    nodes, coords = list(zip(*pos.items()))
    kdtree = KDTree(coords)  # Cannot provide generator.
    edge_indexes = kdtree.query_pairs(radius, p)
    edges = ((nodes[u], nodes[v]) for u, v in edge_indexes)
    G.add_edges_from(edges)


def _slow_construct_edges(G, radius, p):
    """Construct edges for random geometric graph.

    Works without scipy, but in `O(n^2)` time.
    """
    # TODO This can be parallelized.
    for (u, pu), (v, pv) in combinations(G.nodes(data='pos'), 2):
        if sum(abs(a - b) ** p for a, b in zip(pu, pv)) <= radius ** p:
            G.add_edge(u, v)


[docs]@nodes_or_number(0) def random_geometric_graph(n, radius, dim=2, pos=None, p=2): """Returns a random geometric graph in the unit cube. The random geometric graph model places `n` nodes uniformly at random in the unit cube. Two nodes are joined by an edge if the distance between the nodes is at most `radius`. Edges are determined using a KDTree when SciPy is available. This reduces the time complexity from $O(n^2)$ to $O(n)$. Parameters ---------- n : int or iterable Number of nodes or iterable of nodes radius: float Distance threshold value dim : int, optional Dimension of graph pos : dict, optional A dictionary keyed by node with node positions as values. p : float Which Minkowski distance metric to use. `p` has to meet the condition ``1 <= p <= infinity``. If this argument is not specified, the $L^2$ metric (the Euclidean distance metric) is used. This should not be confused with the `p` of an Erdős-Rényi random graph, which represents probability. Returns ------- Graph A random geometric graph, undirected and without self-loops. Each node has a node attribute ``'pos'`` that stores the position of that node in Euclidean space as provided by the ``pos`` keyword argument or, if ``pos`` was not provided, as generated by this function. Examples -------- Create a random geometric graph on twenty nodes where nodes are joined by an edge if their distance is at most 0.1:: >>> G = nx.random_geometric_graph(20, 0.1) Notes ----- This uses a *k*-d tree to build the graph. The `pos` keyword argument can be used to specify node positions so you can create an arbitrary distribution and domain for positions. For example, to use a 2D Gaussian distribution of node positions with mean (0, 0) and standard deviation 2:: >>> import random >>> n = 20 >>> p = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)} >>> G = nx.random_geometric_graph(n, 0.2, pos=p) References ---------- .. [1] Penrose, Mathew, *Random Geometric Graphs*, Oxford Studies in Probability, 5, 2003. """ # TODO Is this function just a special case of the geographical # threshold graph? # # n_name, nodes = n # half_radius = {v: radius / 2 for v in nodes} # return geographical_threshold_graph(nodes, theta=1, alpha=1, # weight=half_radius) # n_name, nodes = n G = nx.Graph() G.add_nodes_from(nodes) # If no positions are provided, choose uniformly random vectors in # Euclidean space of the specified dimension. if pos is None: pos = {v: [random.random() for i in range(dim)] for v in nodes} nx.set_node_attributes(G, pos, 'pos') if _is_scipy_available: _fast_construct_edges(G, radius, p) else: _slow_construct_edges(G, radius, p) return G
[docs]@nodes_or_number(0) def geographical_threshold_graph(n, theta, alpha=2, dim=2, pos=None, weight=None, metric=None): r"""Returns a geographical threshold graph. The geographical threshold graph model places $n$ nodes uniformly at random in a rectangular domain. Each node $u$ is assigned a weight $w_u$. Two nodes $u$ and $v$ are joined by an edge if .. math:: w_u + w_v \ge \theta r^{\alpha} where $r$ is the distance between $u$ and $v$, and $\theta$, $\alpha$ are parameters. Parameters ---------- n : int or iterable Number of nodes or iterable of nodes theta: float Threshold value alpha: float, optional Exponent of distance function dim : int, optional Dimension of graph pos : dict Node positions as a dictionary of tuples keyed by node. weight : dict Node weights as a dictionary of numbers keyed by node. metric : function A metric on vectors of numbers (represented as lists or tuples). This must be a function that accepts two lists (or tuples) as input and yields a number as output. The function must also satisfy the four requirements of a `metric`_. Specifically, if $d$ is the function and $x$, $y$, and $z$ are vectors in the graph, then $d$ must satisfy 1. $d(x, y) \ge 0$, 2. $d(x, y) = 0$ if and only if $x = y$, 3. $d(x, y) = d(y, x)$, 4. $d(x, z) \le d(x, y) + d(y, z)$. If this argument is not specified, the Euclidean distance metric is used. .. _metric: https://en.wikipedia.org/wiki/Metric_%28mathematics%29 Returns ------- Graph A random geographic threshold graph, undirected and without self-loops. Each node has a node attribute ``pos`` that stores the position of that node in Euclidean space as provided by the ``pos`` keyword argument or, if ``pos`` was not provided, as generated by this function. Similarly, each node has a node attribute ``weight`` that stores the weight of that node as provided or as generated. Examples -------- Specify an alternate distance metric using the ``metric`` keyword argument. For example, to use the `taxicab metric`_ instead of the default `Euclidean metric`_:: >>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y)) >>> G = nx.geographical_threshold_graph(10, 0.1, metric=dist) .. _taxicab metric: https://en.wikipedia.org/wiki/Taxicab_geometry .. _Euclidean metric: https://en.wikipedia.org/wiki/Euclidean_distance Notes ----- If weights are not specified they are assigned to nodes by drawing randomly from the exponential distribution with rate parameter $\lambda=1$. To specify weights from a different distribution, use the `weight` keyword argument:: >>> import random >>> n = 20 >>> w = {i: random.expovariate(5.0) for i in range(n)} >>> G = nx.geographical_threshold_graph(20, 50, weight=w) If node positions are not specified they are randomly assigned from the uniform distribution. References ---------- .. [1] Masuda, N., Miwa, H., Konno, N.: Geographical threshold graphs with small-world and scale-free properties. Physical Review E 71, 036108 (2005) .. [2] Milan Bradonjić, Aric Hagberg and Allon G. Percus, Giant component and connectivity in geographical threshold graphs, in Algorithms and Models for the Web-Graph (WAW 2007), Antony Bonato and Fan Chung (Eds), pp. 209--216, 2007 """ n_name, nodes = n G = nx.Graph() G.add_nodes_from(nodes) # If no weights are provided, choose them from an exponential # distribution. if weight is None: weight = {v: random.expovariate(1) for v in G} # If no positions are provided, choose uniformly random vectors in # Euclidean space of the specified dimension. if pos is None: pos = {v: [random.random() for i in range(dim)] for v in nodes} # If no distance metric is provided, use Euclidean distance. if metric is None: metric = euclidean nx.set_node_attributes(G, weight, 'weight') nx.set_node_attributes(G, pos, 'pos') # Returns ``True`` if and only if the nodes whose attributes are # ``du`` and ``dv`` should be joined, according to the threshold # condition. def should_join(pair): u, v = pair u_pos, v_pos = pos[u], pos[v] u_weight, v_weight = weight[u], weight[v] return theta * metric(u_pos, v_pos) ** alpha <= u_weight + v_weight G.add_edges_from(filter(should_join, combinations(G, 2))) return G
[docs]@nodes_or_number(0) def waxman_graph(n, beta=0.4, alpha=0.1, L=None, domain=(0, 0, 1, 1), metric=None): r"""Return a Waxman random graph. The Waxman random graph model places `n` nodes uniformly at random in a rectangular domain. Each pair of nodes at distance `d` is joined by an edge with probability .. math:: p = \beta \exp(-d / \alpha L). This function implements both Waxman models, using the `L` keyword argument. * Waxman-1: if `L` is not specified, it is set to be the maximum distance between any pair of nodes. * Waxman-2: if `L` is specified, the distance between a pair of nodes is chosen uniformly at random from the interval `[0, L]`. Parameters ---------- n : int or iterable Number of nodes or iterable of nodes beta: float Model parameter alpha: float Model parameter L : float, optional Maximum distance between nodes. If not specified, the actual distance is calculated. domain : four-tuple of numbers, optional Domain size, given as a tuple of the form `(x_min, y_min, x_max, y_max)`. metric : function A metric on vectors of numbers (represented as lists or tuples). This must be a function that accepts two lists (or tuples) as input and yields a number as output. The function must also satisfy the four requirements of a `metric`_. Specifically, if $d$ is the function and $x$, $y$, and $z$ are vectors in the graph, then $d$ must satisfy 1. $d(x, y) \ge 0$, 2. $d(x, y) = 0$ if and only if $x = y$, 3. $d(x, y) = d(y, x)$, 4. $d(x, z) \le d(x, y) + d(y, z)$. If this argument is not specified, the Euclidean distance metric is used. .. _metric: https://en.wikipedia.org/wiki/Metric_%28mathematics%29 Returns ------- Graph A random Waxman graph, undirected and without self-loops. Each node has a node attribute ``'pos'`` that stores the position of that node in Euclidean space as generated by this function. Examples -------- Specify an alternate distance metric using the ``metric`` keyword argument. For example, to use the "`taxicab metric`_" instead of the default `Euclidean metric`_:: >>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y)) >>> G = nx.waxman_graph(10, 0.5, 0.1, metric=dist) .. _taxicab metric: https://en.wikipedia.org/wiki/Taxicab_geometry .. _Euclidean metric: https://en.wikipedia.org/wiki/Euclidean_distance Notes ----- Starting in NetworkX 2.0 the parameters alpha and beta align with their usual roles in the probability distribution. In earlier versions their positions in the expresssion were reversed. Their position in the calling sequence reversed as well to minimize backward incompatibility. References ---------- .. [1] B. M. Waxman, *Routing of multipoint connections*. IEEE J. Select. Areas Commun. 6(9),(1988) 1617--1622. """ n_name, nodes = n G = nx.Graph() G.add_nodes_from(nodes) (xmin, ymin, xmax, ymax) = domain # Each node gets a uniformly random position in the given rectangle. pos = {v: (uniform(xmin, xmax), uniform(ymin, ymax)) for v in G} nx.set_node_attributes(G, pos, 'pos') # If no distance metric is provided, use Euclidean distance. if metric is None: metric = euclidean # If the maximum distance L is not specified (that is, we are in the # Waxman-1 model), then find the maximum distance between any pair # of nodes. # # In the Waxman-1 model, join nodes randomly based on distance. In # the Waxman-2 model, join randomly based on random l. if L is None: L = max(metric(x, y) for x, y in combinations(pos.values(), 2)) dist = lambda u, v: metric(pos[u], pos[v]) else: dist = lambda u, v: random.random() * L # `pair` is the pair of nodes to decide whether to join. def should_join(pair): return random.random() < beta * math.exp(-dist(*pair) / (alpha * L)) G.add_edges_from(filter(should_join, combinations(G, 2))) return G