Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

Source code for networkx.algorithms.tree.mst

# -*- coding: utf-8 -*-
#    Copyright (C) 2017 NetworkX Developers
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    Loïc Séguin-C. <loicseguin@gmail.com>
#    All rights reserved.
#    BSD license.
"""
Algorithms for calculating min/max spanning trees/forests.

"""
from heapq import heappop, heappush
from operator import itemgetter
from itertools import count
from math import isnan

import networkx as nx
from networkx.utils import UnionFind, not_implemented_for

__all__ = [
    'minimum_spanning_edges', 'maximum_spanning_edges',
    'minimum_spanning_tree', 'maximum_spanning_tree',
]


@not_implemented_for('multigraph')
def boruvka_mst_edges(G, minimum=True, weight='weight',
                      keys=False, data=True, ignore_nan=False):
    """Iterate over edges of a Borůvka's algorithm min/max spanning tree.

    Parameters
    ----------
    G : NetworkX Graph
        The edges of `G` must have distinct weights,
        otherwise the edges may not form a tree.

    minimum : bool (default: True)
        Find the minimum (True) or maximum (False) spanning tree.

    weight : string (default: 'weight')
        The name of the edge attribute holding the edge weights.

    keys : bool (default: True)
        This argument is ignored since this function is not
        implemented for multigraphs; it exists only for consistency
        with the other minimum spanning tree functions.

    data : bool (default: True)
        Flag for whether to yield edge attribute dicts.
        If True, yield edges `(u, v, d)`, where `d` is the attribute dict.
        If False, yield edges `(u, v)`.

    ignore_nan : bool (default: False)
        If a NaN is found as an edge weight normally an exception is raised.
        If `ignore_nan is True` then that edge is ignored instead.

    """
    # Initialize a forest, assuming initially that it is the discrete
    # partition of the nodes of the graph.
    forest = UnionFind(G)

    def best_edge(component):
        """Returns the optimum (minimum or maximum) edge on the edge
        boundary of the given set of nodes.

        A return value of ``None`` indicates an empty boundary.

        """
        sign = 1 if minimum else -1
        minwt = float('inf')
        boundary = None
        for e in nx.edge_boundary(G, component, data=True):
            wt = e[-1].get(weight, 1) * sign
            if isnan(wt):
                if ignore_nan:
                    continue
                msg = "NaN found as an edge weight. Edge %s"
                raise ValueError(msg % (e,))
            if wt < minwt:
                minwt = wt
                boundary = e
        return boundary

    # Determine the optimum edge in the edge boundary of each component
    # in the forest.
    best_edges = (best_edge(component) for component in forest.to_sets())
    best_edges = [edge for edge in best_edges if edge is not None]
    # If each entry was ``None``, that means the graph was disconnected,
    # so we are done generating the forest.
    while best_edges:
        # Determine the optimum edge in the edge boundary of each
        # component in the forest.
        #
        # This must be a sequence, not an iterator. In this list, the
        # same edge may appear twice, in different orientations (but
        # that's okay, since a union operation will be called on the
        # endpoints the first time it is seen, but not the second time).
        #
        # Any ``None`` indicates that the edge boundary for that
        # component was empty, so that part of the forest has been
        # completed.
        #
        # TODO This can be parallelized, both in the outer loop over
        # each component in the forest and in the computation of the
        # minimum. (Same goes for the identical lines outside the loop.)
        best_edges = (best_edge(component) for component in forest.to_sets())
        best_edges = [edge for edge in best_edges if edge is not None]
        # Join trees in the forest using the best edges, and yield that
        # edge, since it is part of the spanning tree.
        #
        # TODO This loop can be parallelized, to an extent (the union
        # operation must be atomic).
        for u, v, d in best_edges:
            if forest[u] != forest[v]:
                if data:
                    yield u, v, d
                else:
                    yield u, v
                forest.union(u, v)


def kruskal_mst_edges(G, minimum, weight='weight',
                      keys=True, data=True, ignore_nan=False):
    """Iterate over edges of a Kruskal's algorithm min/max spanning tree.

    Parameters
    ----------
    G : NetworkX Graph
        The graph holding the tree of interest.

    minimum : bool (default: True)
        Find the minimum (True) or maximum (False) spanning tree.

    weight : string (default: 'weight')
        The name of the edge attribute holding the edge weights.

    keys : bool (default: True)
        If `G` is a multigraph, `keys` controls whether edge keys ar yielded.
        Otherwise `keys` is ignored.

    data : bool (default: True)
        Flag for whether to yield edge attribute dicts.
        If True, yield edges `(u, v, d)`, where `d` is the attribute dict.
        If False, yield edges `(u, v)`.

    ignore_nan : bool (default: False)
        If a NaN is found as an edge weight normally an exception is raised.
        If `ignore_nan is True` then that edge is ignored instead.

    """
    subtrees = UnionFind()
    if G.is_multigraph():
        edges = G.edges(keys=True, data=True)

        def filter_nan_edges(edges=edges, weight=weight):
            sign = 1 if minimum else -1
            for u, v, k, d in edges:
                wt = d.get(weight, 1) * sign
                if isnan(wt):
                    if ignore_nan:
                        continue
                    msg = "NaN found as an edge weight. Edge %s"
                    raise ValueError(msg % ((u, v, f, k, d),))
                yield wt, u, v, k, d
    else:
        edges = G.edges(data=True)

        def filter_nan_edges(edges=edges, weight=weight):
            sign = 1 if minimum else -1
            for u, v, d in edges:
                wt = d.get(weight, 1) * sign
                if isnan(wt):
                    if ignore_nan:
                        continue
                    msg = "NaN found as an edge weight. Edge %s"
                    raise ValueError(msg % ((u, v, d),))
                yield wt, u, v, d
    edges = sorted(filter_nan_edges(), key=itemgetter(0))
    # Multigraphs need to handle edge keys in addition to edge data.
    if G.is_multigraph():
        for wt, u, v, k, d in edges:
            if subtrees[u] != subtrees[v]:
                if keys:
                    if data:
                        yield u, v, k, d
                    else:
                        yield u, v, k
                else:
                    if data:
                        yield u, v, d
                    else:
                        yield u, v
                subtrees.union(u, v)
    else:
        for wt, u, v, d in edges:
            if subtrees[u] != subtrees[v]:
                if data:
                    yield (u, v, d)
                else:
                    yield (u, v)
                subtrees.union(u, v)


def prim_mst_edges(G, minimum, weight='weight',
                   keys=True, data=True, ignore_nan=False):
    """Iterate over edges of Prim's algorithm min/max spanning tree.

    Parameters
    ----------
    G : NetworkX Graph
        The graph holding the tree of interest.

    minimum : bool (default: True)
        Find the minimum (True) or maximum (False) spanning tree.

    weight : string (default: 'weight')
        The name of the edge attribute holding the edge weights.

    keys : bool (default: True)
        If `G` is a multigraph, `keys` controls whether edge keys ar yielded.
        Otherwise `keys` is ignored.

    data : bool (default: True)
        Flag for whether to yield edge attribute dicts.
        If True, yield edges `(u, v, d)`, where `d` is the attribute dict.
        If False, yield edges `(u, v)`.

    ignore_nan : bool (default: False)
        If a NaN is found as an edge weight normally an exception is raised.
        If `ignore_nan is True` then that edge is ignored instead.

    """
    is_multigraph = G.is_multigraph()
    push = heappush
    pop = heappop

    nodes = list(G)
    c = count()

    sign = 1 if minimum else -1

    while nodes:
        u = nodes.pop(0)
        frontier = []
        visited = [u]
        if is_multigraph:
            for v, keydict in G.adj[u].items():
                for k, d in keydict.items():
                    wt = d.get(weight, 1) * sign
                    if isnan(wt):
                        if ignore_nan:
                            continue
                        msg = "NaN found as an edge weight. Edge %s"
                        raise ValueError(msg % ((u, v, k, d),))
                    push(frontier, (wt, next(c), u, v, k, d))
        else:
            for v, d in G.adj[u].items():
                wt = d.get(weight, 1) * sign
                if isnan(wt):
                    if ignore_nan:
                        continue
                    msg = "NaN found as an edge weight. Edge %s"
                    raise ValueError(msg % ((u, v, d),))
                push(frontier, (wt, next(c), u, v, d))
        while frontier:
            if is_multigraph:
                W, _, u, v, k, d = pop(frontier)
            else:
                W, _, u, v, d = pop(frontier)
            if v in visited:
                continue
            # Multigraphs need to handle edge keys in addition to edge data.
            if is_multigraph and keys:
                if data:
                    yield u, v, k, d
                else:
                    yield u, v, k
            else:
                if data:
                    yield u, v, d
                else:
                    yield u, v
            # update frontier
            visited.append(v)
            nodes.remove(v)
            if is_multigraph:
                for w, keydict in G.adj[v].items():
                    if w in visited:
                        continue
                    for k2, d2 in keydict.items():
                        new_weight = d2.get(weight, 1) * sign
                        push(frontier, (new_weight, next(c), v, w, k2, d2))
            else:
                for w, d2 in G.adj[v].items():
                    if w in visited:
                        continue
                    new_weight = d2.get(weight, 1) * sign
                    push(frontier, (new_weight, next(c), v, w, d2))


ALGORITHMS = {
    'boruvka': boruvka_mst_edges,
    u'borůvka': boruvka_mst_edges,
    'kruskal': kruskal_mst_edges,
    'prim': prim_mst_edges
}


[docs]@not_implemented_for('directed') def minimum_spanning_edges(G, algorithm='kruskal', weight='weight', keys=True, data=True, ignore_nan=False): """Generate edges in a minimum spanning forest of an undirected weighted graph. A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph. Parameters ---------- G : undirected Graph An undirected graph. If `G` is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. algorithm : string The algorithm to use when finding a minimum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. weight : string Edge data key to use for weight (default 'weight'). keys : bool Whether to yield edge key in multigraphs in addition to the edge. If `G` is not a multigraph, this is ignored. data : bool, optional If True yield the edge data along with the edge. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- edges : iterator An iterator over edges in a maximum spanning tree of `G`. Edges connecting nodes `u` and `v` are represented as tuples: `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)` If `G` is a multigraph, `keys` indicates whether the edge key `k` will be reported in the third position in the edge tuple. `data` indicates whether the edge datadict `d` will appear at the end of the edge tuple. If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True or `(u, v)` if `data` is False. Examples -------- >>> from networkx.algorithms import tree Find minimum spanning edges by Kruskal's algorithm >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> mst = tree.minimum_spanning_edges(G, algorithm='kruskal', data=False) >>> edgelist = list(mst) >>> sorted(edgelist) [(0, 1), (1, 2), (2, 3)] Find minimum spanning edges by Prim's algorithm >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> mst = tree.minimum_spanning_edges(G, algorithm='prim', data=False) >>> edgelist = list(mst) >>> sorted(edgelist) [(0, 1), (1, 2), (2, 3)] Notes ----- For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/ """ try: algo = ALGORITHMS[algorithm] except KeyError: msg = '{} is not a valid choice for an algorithm.'.format(algorithm) raise ValueError(msg) return algo(G, minimum=True, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan)
[docs]@not_implemented_for('directed') def maximum_spanning_edges(G, algorithm='kruskal', weight='weight', keys=True, data=True, ignore_nan=False): """Generate edges in a maximum spanning forest of an undirected weighted graph. A maximum spanning tree is a subgraph of the graph (a tree) with the maximum possible sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph. Parameters ---------- G : undirected Graph An undirected graph. If `G` is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. algorithm : string The algorithm to use when finding a maximum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. weight : string Edge data key to use for weight (default 'weight'). keys : bool Whether to yield edge key in multigraphs in addition to the edge. If `G` is not a multigraph, this is ignored. data : bool, optional If True yield the edge data along with the edge. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- edges : iterator An iterator over edges in a maximum spanning tree of `G`. Edges connecting nodes `u` and `v` are represented as tuples: `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)` If `G` is a multigraph, `keys` indicates whether the edge key `k` will be reported in the third position in the edge tuple. `data` indicates whether the edge datadict `d` will appear at the end of the edge tuple. If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True or `(u, v)` if `data` is False. Examples -------- >>> from networkx.algorithms import tree Find maximum spanning edges by Kruskal's algorithm >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> mst = tree.maximum_spanning_edges(G, algorithm='kruskal', data=False) >>> edgelist = list(mst) >>> sorted(edgelist) [(0, 1), (0, 3), (1, 2)] Find maximum spanning edges by Prim's algorithm >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) # assign weight 2 to edge 0-3 >>> mst = tree.maximum_spanning_edges(G, algorithm='prim', data=False) >>> edgelist = list(mst) >>> sorted(edgelist) [(0, 1), (0, 3), (3, 2)] Notes ----- For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/ """ try: algo = ALGORITHMS[algorithm] except KeyError: msg = '{} is not a valid choice for an algorithm.'.format(algorithm) raise ValueError(msg) return algo(G, minimum=False, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan)
[docs]def minimum_spanning_tree(G, weight='weight', algorithm='kruskal', ignore_nan=False): """Returns a minimum spanning tree or forest on an undirected graph `G`. Parameters ---------- G : undirected graph An undirected graph. If `G` is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. weight : str Data key to use for edge weights. algorithm : string The algorithm to use when finding a minimum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- G : NetworkX Graph A minimum spanning tree or forest. Examples -------- >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> T = nx.minimum_spanning_tree(G) >>> sorted(T.edges(data=True)) [(0, 1, {}), (1, 2, {}), (2, 3, {})] Notes ----- For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. There may be more than one tree with the same minimum or maximum weight. See :mod:`networkx.tree.recognition` for more detailed definitions. Isolated nodes with self-loops are in the tree as edgeless isolated nodes. """ edges = minimum_spanning_edges(G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan) T = G.fresh_copy() # Same graph class as G T.graph.update(G.graph) T.add_nodes_from(G.nodes.items()) T.add_edges_from(edges) return T
[docs]def maximum_spanning_tree(G, weight='weight', algorithm='kruskal', ignore_nan=False): """Returns a maximum spanning tree or forest on an undirected graph `G`. Parameters ---------- G : undirected graph An undirected graph. If `G` is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. weight : str Data key to use for edge weights. algorithm : string The algorithm to use when finding a minimum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- G : NetworkX Graph A minimum spanning tree or forest. Examples -------- >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> T = nx.maximum_spanning_tree(G) >>> sorted(T.edges(data=True)) [(0, 1, {}), (0, 3, {'weight': 2}), (1, 2, {})] Notes ----- For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. There may be more than one tree with the same minimum or maximum weight. See :mod:`networkx.tree.recognition` for more detailed definitions. Isolated nodes with self-loops are in the tree as edgeless isolated nodes. """ edges = maximum_spanning_edges(G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan) edges = list(edges) T = G.fresh_copy() # Same graph class as G T.graph.update(G.graph) T.add_nodes_from(G.nodes.items()) T.add_edges_from(edges) return T