Warning
This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.
edges_iter¶
- MultiGraph.edges_iter(nbunch=None, data=False, keys=False)¶
Return an iterator over the edges.
Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters : nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns : edge_iter : iterator
An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.
See also
- edges
- return a list of edges
Notes
Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.
Examples
>>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> [e for e in G.edges_iter()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges_iter(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {})] >>> list(G.edges(keys=True)) # default keys are integers [(0, 1, 0), (1, 2, 0), (2, 3, 0)] >>> list(G.edges(data=True,keys=True)) # default keys are integers [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {})] >>> list(G.edges_iter([0,3])) [(0, 1), (3, 2)] >>> list(G.edges_iter(0)) [(0, 1)]