Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

# DiGraph - Directed graphs with self loops¶

## Overview¶

DiGraph(data=None, **attr)

Base class for directed graphs.

A DiGraph stores nodes and edges with optional data, or attributes.

DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters : data : input graph Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs.

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.DiGraph()


G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)


Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> H=nx.Graph()


In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

>>> G.add_node(H)


Edges:

G can also be grown by adding edges.

>>> G.add_edge(1, 2)


a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])


or a collection of edges,

>>> G.add_edges_from(H.edges())


If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.DiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}


>>> G.add_node(1, time='5pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]


Warning: adding a node to G.node does not add it to the graph.

>>> G.add_edge(1, 2, weight=4.7 )
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4


Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G     # check if node in graph
True
>>> [n for n in G if n<3]   # iterate through nodes
[1, 2]
>>> len(G)  # number of nodes in graph
5


The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
...     for nbr,eattr in nbrsdict.items():
...        if 'weight' in eattr:
...            (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
[(1, 2, 4), (2, 3, 8)]


Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.