Warning
This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.
Version 1.6 notes and API changes¶
This page reflects API changes from networkx-1.5 to networkx-1.6.
Please send comments and questions to the networkx-discuss mailing list: http://groups.google.com/group/networkx-discuss .
Graph Classes¶
The degree* methods in the graph classes (Graph, DiGraph, MultiGraph, MultiDiGraph) now take an optional weight= keyword that allows computing weighted degree with arbitrary (numerical) edge attributes. Setting weight=None is equivalent to the previous weighted=False.
Weighted graph algorithms¶
Many ‘weighted’ graph algorithms now take optional parameter to specifiy which edge attribute should be used for the weight (default=’weight’) (ticket 573)
In some cases the parameter name was changed from weighted, to weight. Here is how to specify which edge attribute will be used in the algorithms:
- Use weight=None to consider all weights equally (unweighted case)
- Use weight=’weight’ to use the ‘weight’ edge atribute
- Use weight=’other’ to use the ‘other’ edge attribute
Algorithms affected are:
to_scipy_sparse_matrix, clustering, average_clustering, bipartite.degree, spectral_layout, neighbor_degree, is_isomorphic, betweenness_centrality, betweenness_centrality_subset, vitality, load_centrality, mincost, shortest_path, shortest_path_length, average_shortest_path_length
Isomorphisms¶
Node and edge attributes are now more easily incorporated into isomorphism checks via the ‘node_match’ and ‘edge_match’ parameters. As part of this change, the following classes were removed:
WeightedGraphMatcher
WeightedDiGraphMatcher
WeightedMultiGraphMatcher
WeightedMultiDiGraphMatcher
The function signature for ‘is_isomorphic’ is now simply:
is_isomorphic(g1, g2, node_match=None, edge_match=None)
See its docstring for more details. To aid in the creation of ‘node_match’ and ‘edge_match’ functions, users are encouraged to work with:
categorical_node_match
categorical_edge_match
categroical_multiedge_match
numerical_node_match
numerical_edge_match
numerical_multiedge_match
generic_node_match
generic_edge_match
generic_multiedge_match
These functions construct functions which can be passed to ‘is_isomorphic’. Finally, note that the above functions are not imported into the top-level namespace and should be accessed from ‘networkx.algorithms.isomorphism’. A useful import statement that will be repeated throughout documentation is:
import networkx.algorithms.isomorphism as iso
Other¶
attracting_components
A list of lists is returned instead of a list of tuples.
condensation
The condensation algorithm now takes a second argument (scc) and returns a graph with nodes labeled as integers instead of node tuples.
degree connectivity
average_in_degree_connectivity and average_out_degree_connectivity have have been replaced with
average_degree_connectivity(G, source=’in’, target=’in’)
and
average_degree_connectivity(G, source=’out’, target=’out’)
neighbor degree
average_neighbor_in_degree and average_neighbor_out_degreey have have been replaced with
average_neighbor_degree(G, source=’in’, target=’in’)
and
average_neighbor_degree(G, source=’out’, target=’out’)