Warning
This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.
latapy_clustering¶
-
latapy_clustering
(G, nodes=None, mode='dot')[source]¶ Compute a bipartite clustering coefficient for nodes.
The bipartie clustering coefficient is a measure of local density of connections defined as [R162]:
\[c_u = \frac{\sum_{v \in N(N(v))} c_{uv} }{|N(N(u))|}\]where \(N(N(u))\) are the second order neighbors of \(u\) in \(G\) excluding \(u\), and \(c_{uv}\) is the pairwise clustering coefficient between nodes \(u\) and \(v\).
The mode selects the function for \(c_{uv}\) which can be:
\(dot\):
\[c_{uv}=\frac{|N(u)\cap N(v)|}{|N(u) \cup N(v)|}\]\(min\):
\[c_{uv}=\frac{|N(u)\cap N(v)|}{min(|N(u)|,|N(v)|)}\]\(max\):
\[c_{uv}=\frac{|N(u)\cap N(v)|}{max(|N(u)|,|N(v)|)}\]Parameters: G : graph
A bipartite graph
nodes : list or iterable (optional)
Compute bipartite clustering for these nodes. The default is all nodes in G.
mode : string
The pariwise bipartite clustering method to be used in the computation. It must be “dot”, “max”, or “min”.
Returns: clustering : dictionary
A dictionary keyed by node with the clustering coefficient value.
See also
robins_alexander_clustering
,square_clustering
,average_clustering
References
[R162] (1, 2) Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48. Examples
>>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) # path graphs are bipartite >>> c = bipartite.clustering(G) >>> c[0] 0.5 >>> c = bipartite.clustering(G,mode='min') >>> c[0] 1.0