Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

Source code for networkx.algorithms.flow.capacityscaling

# -*- coding: utf-8 -*-
"""
Capacity scaling minimum cost flow algorithm.
"""

__author__ = """ysitu <ysitu@users.noreply.github.com>"""
# Copyright (C) 2014 ysitu <ysitu@users.noreply.github.com>
# All rights reserved.
# BSD license.

__all__ = ['capacity_scaling']

from itertools import chain
from math import log
import networkx as nx
from networkx.utils import *


def _detect_unboundedness(R):
    """Detect infinite-capacity negative cycles.
    """
    s = generate_unique_node()
    G = nx.DiGraph()
    G.add_nodes_from(R)

    # Value simulating infinity.
    inf = R.graph['inf']
    # True infinity.
    f_inf = float('inf')
    for u in R:
        for v, e in R[u].items():
            # Compute the minimum weight of infinite-capacity (u, v) edges.
            w = f_inf
            for k, e in e.items():
                if e['capacity'] == inf:
                    w = min(w, e['weight'])
            if w != f_inf:
                G.add_edge(u, v, weight=w)

    if nx.negative_edge_cycle(G):
        raise nx.NetworkXUnbounded(
            'Negative cost cycle of infinite capacity found. '
            'Min cost flow may be unbounded below.')


@not_implemented_for('undirected')
def _build_residual_network(G, demand, capacity, weight):
    """Build a residual network and initialize a zero flow.
    """
    if sum(G.node[u].get(demand, 0) for u in G) != 0:
        raise nx.NetworkXUnfeasible("Sum of the demands should be 0.")

    R = nx.MultiDiGraph()
    R.add_nodes_from((u, {'excess': -G.node[u].get(demand, 0),
                          'potential': 0}) for u in G)

    inf = float('inf')
    # Detect selfloops with infinite capacities and negative weights.
    for u, v, e in G.selfloop_edges(data=True):
        if e.get(weight, 0) < 0 and e.get(capacity, inf) == inf:
            raise nx.NetworkXUnbounded(
                'Negative cost cycle of infinite capacity found. '
                'Min cost flow may be unbounded below.')

    # Extract edges with positive capacities. Self loops excluded.
    if G.is_multigraph():
        edge_list = [(u, v, k, e)
                     for u, v, k, e in G.edges_iter(data=True, keys=True)
                     if u != v and e.get(capacity, inf) > 0]
    else:
        edge_list = [(u, v, 0, e) for u, v, e in G.edges_iter(data=True)
                     if u != v and e.get(capacity, inf) > 0]
    # Simulate infinity with the larger of the sum of absolute node imbalances
    # the sum of finite edge capacities or any positive value if both sums are
    # zero. This allows the infinite-capacity edges to be distinguished for
    # unboundedness detection and directly participate in residual capacity
    # calculation.
    inf = max(sum(abs(R.node[u]['excess']) for u in R),
              2 * sum(e[capacity] for u, v, k, e in edge_list
                      if capacity in e and e[capacity] != inf)) or 1
    for u, v, k, e in edge_list:
        r = min(e.get(capacity, inf), inf)
        w = e.get(weight, 0)
        # Add both (u, v) and (v, u) into the residual network marked with the
        # original key. (key[1] == True) indicates the (u, v) is in the
        # original network.
        R.add_edge(u, v, key=(k, True), capacity=r, weight=w, flow=0)
        R.add_edge(v, u, key=(k, False), capacity=0, weight=-w, flow=0)

    # Record the value simulating infinity.
    R.graph['inf'] = inf

    _detect_unboundedness(R)

    return R


def _build_flow_dict(G, R, capacity, weight):
    """Build a flow dictionary from a residual network.
    """
    inf = float('inf')
    flow_dict = {}
    if G.is_multigraph():
        for u in G:
            flow_dict[u] = {}
            for v, es in G[u].items():
                flow_dict[u][v] = dict(
                    # Always saturate negative selfloops.
                    (k, (0 if (u != v or e.get(capacity, inf) <= 0 or
                               e.get(weight, 0) >= 0) else e[capacity]))
                    for k, e in es.items())
            for v, es in R[u].items():
                if v in flow_dict[u]:
                    flow_dict[u][v].update((k[0], e['flow'])
                                           for k, e in es.items()
                                           if e['flow'] > 0)
    else:
        for u in G:
            flow_dict[u] = dict(
                # Always saturate negative selfloops.
                (v, (0 if (u != v or e.get(capacity, inf) <= 0 or
                           e.get(weight, 0) >= 0) else e[capacity]))
                for v, e in G[u].items())
            flow_dict[u].update((v, e['flow']) for v, es in R[u].items()
                                for e in es.values() if e['flow'] > 0)
    return flow_dict


[docs]def capacity_scaling(G, demand='demand', capacity='capacity', weight='weight', heap=BinaryHeap): """Find a minimum cost flow satisfying all demands in digraph G. This is a capacity scaling successive shortest augmenting path algorithm. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. Parameters ---------- G : NetworkX graph DiGraph or MultiDiGraph on which a minimum cost flow satisfying all demands is to be found. demand : string Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. capacity : string Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. weight : string Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. heap : class Type of heap to be used in the algorithm. It should be a subclass of :class:`MinHeap` or implement a compatible interface. If a stock heap implementation is to be used, :class:`BinaryHeap` is recommeded over :class:`PairingHeap` for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), :class:`PairingHeap` provides better performance. Default value: :class:`BinaryHeap`. Returns ------- flowCost: integer Cost of a minimum cost flow satisfying all demands. flowDict: dictionary Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v) if G is a digraph. Dictionary of dictionaries of dictionaries keyed by nodes such that flowDict[u][v][key] is the flow edge (u, v, key) if G is a multidigraph. Raises ------ NetworkXError This exception is raised if the input graph is not directed, not connected. NetworkXUnfeasible This exception is raised in the following situations: * The sum of the demands is not zero. Then, there is no flow satisfying all demands. * There is no flow satisfying all demand. NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. Notes ----- This algorithm does not work if edge weights are floating-point numbers. See also -------- :meth:`network_simplex` Examples -------- A simple example of a min cost flow problem. >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand = -5) >>> G.add_node('d', demand = 5) >>> G.add_edge('a', 'b', weight = 3, capacity = 4) >>> G.add_edge('a', 'c', weight = 6, capacity = 10) >>> G.add_edge('b', 'd', weight = 1, capacity = 9) >>> G.add_edge('c', 'd', weight = 2, capacity = 5) >>> flowCost, flowDict = nx.capacity_scaling(G) >>> flowCost 24 >>> flowDict # doctest: +SKIP {'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}} It is possible to change the name of the attributes used for the algorithm. >>> G = nx.DiGraph() >>> G.add_node('p', spam = -4) >>> G.add_node('q', spam = 2) >>> G.add_node('a', spam = -2) >>> G.add_node('d', spam = -1) >>> G.add_node('t', spam = 2) >>> G.add_node('w', spam = 3) >>> G.add_edge('p', 'q', cost = 7, vacancies = 5) >>> G.add_edge('p', 'a', cost = 1, vacancies = 4) >>> G.add_edge('q', 'd', cost = 2, vacancies = 3) >>> G.add_edge('t', 'q', cost = 1, vacancies = 2) >>> G.add_edge('a', 't', cost = 2, vacancies = 4) >>> G.add_edge('d', 'w', cost = 3, vacancies = 4) >>> G.add_edge('t', 'w', cost = 4, vacancies = 1) >>> flowCost, flowDict = nx.capacity_scaling(G, demand = 'spam', ... capacity = 'vacancies', ... weight = 'cost') >>> flowCost 37 >>> flowDict # doctest: +SKIP {'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}} """ R = _build_residual_network(G, demand, capacity, weight) inf = float('inf') # Account cost of negative selfloops. flow_cost = sum( 0 if e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0 else e[capacity] * e[weight] for u, v, e in G.selfloop_edges(data=True)) # Determine the maxmimum edge capacity. wmax = max(chain([-inf], (e['capacity'] for u, v, e in R.edges_iter(data=True)))) if wmax == -inf: # Residual network has no edges. return flow_cost, _build_flow_dict(G, R, capacity, weight) R_node = R.node R_succ = R.succ delta = 2 ** int(log(wmax, 2)) while delta >= 1: # Saturate Δ-residual edges with negative reduced costs to achieve # Δ-optimality. for u in R: p_u = R_node[u]['potential'] for v, es in R_succ[u].items(): for k, e in es.items(): flow = e['capacity'] - e['flow'] if e['weight'] - p_u + R_node[v]['potential'] < 0: flow = e['capacity'] - e['flow'] if flow >= delta: e['flow'] += flow R_succ[v][u][(k[0], not k[1])]['flow'] -= flow R_node[u]['excess'] -= flow R_node[v]['excess'] += flow # Determine the Δ-active nodes. S = set() T = set() S_add = S.add S_remove = S.remove T_add = T.add T_remove = T.remove for u in R: excess = R_node[u]['excess'] if excess >= delta: S_add(u) elif excess <= -delta: T_add(u) # Repeatedly augment flow from S to T along shortest paths until # Δ-feasibility is achieved. while S and T: s = next(iter(S)) t = None # Search for a shortest path in terms of reduce costs from s to # any t in T in the Δ-residual network. d = {} pred = {s: None} h = heap() h_insert = h.insert h_get = h.get h_insert(s, 0) while h: u, d_u = h.pop() d[u] = d_u if u in T: # Path found. t = u break p_u = R_node[u]['potential'] for v, es in R_succ[u].items(): if v in d: continue wmin = inf # Find the minimum-weighted (u, v) Δ-residual edge. for k, e in es.items(): if e['capacity'] - e['flow'] >= delta: w = e['weight'] if w < wmin: wmin = w kmin = k emin = e if wmin == inf: continue # Update the distance label of v. d_v = d_u + wmin - p_u + R_node[v]['potential'] if h_insert(v, d_v): pred[v] = (u, kmin, emin) if t is None: # Path not found. raise nx.NetworkXUnfeasible('No flow satisfying all demands.') # Augment Δ units of flow from s to t. while u != s: v = u u, k, e = pred[v] e['flow'] += delta R_succ[v][u][(k[0], not k[1])]['flow'] -= delta # Account node excess and deficit. R_node[s]['excess'] -= delta R_node[t]['excess'] += delta if R_node[s]['excess'] < delta: S_remove(s) if R_node[t]['excess'] > -delta: T_remove(t) # Update node potentials. d_t = d[t] for u, d_u in d.items(): R_node[u]['potential'] -= d_u - d_t delta //= 2 # Calculate the flow cost. for u in R: for v, es in R_succ[u].items(): for e in es.values(): flow = e['flow'] if flow > 0: flow_cost += flow * e['weight'] return flow_cost, _build_flow_dict(G, R, capacity, weight)