Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

Source code for networkx.algorithms.centrality.eigenvector

"""
Eigenvector centrality.
"""
#    Copyright (C) 2004-2014 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
import networkx as nx
__author__ = "\n".join(['Aric Hagberg (aric.hagberg@gmail.com)',
                        'Pieter Swart (swart@lanl.gov)',
                        'Sasha Gutfraind (ag362@cornell.edu)'])
__all__ = ['eigenvector_centrality',
           'eigenvector_centrality_numpy']

[docs]def eigenvector_centrality(G, max_iter=100, tol=1.0e-6, nstart=None, weight='weight'): """Compute the eigenvector centrality for the graph G. Uses the power method to find the eigenvector for the largest eigenvalue of the adjacency matrix of G. Parameters ---------- G : graph A networkx graph max_iter : interger, optional Maximum number of iterations in power method. tol : float, optional Error tolerance used to check convergence in power method iteration. nstart : dictionary, optional Starting value of eigenvector iteration for each node. weight : None or string, optional If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. Returns ------- nodes : dictionary Dictionary of nodes with eigenvector centrality as the value. Examples -------- >>> G = nx.path_graph(4) >>> centrality = nx.eigenvector_centrality(G) >>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality]) ['0 0.37', '1 0.60', '2 0.60', '3 0.37'] Notes ------ The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached. For directed graphs this is "left" eigevector centrality which corresponds to the in-edges in the graph. For out-edges eigenvector centrality first reverse the graph with G.reverse(). See Also -------- eigenvector_centrality_numpy pagerank hits """ from math import sqrt if type(G) == nx.MultiGraph or type(G) == nx.MultiDiGraph: raise nx.NetworkXException("Not defined for multigraphs.") if len(G) == 0: raise nx.NetworkXException("Empty graph.") if nstart is None: # choose starting vector with entries of 1/len(G) x = dict([(n,1.0/len(G)) for n in G]) else: x = nstart # normalize starting vector s = 1.0/sum(x.values()) for k in x: x[k] *= s nnodes = G.number_of_nodes() # make up to max_iter iterations for i in range(max_iter): xlast = x x = dict.fromkeys(xlast, 0) # do the multiplication y^T = x^T A for n in x: for nbr in G[n]: x[nbr] += xlast[n] * G[n][nbr].get(weight, 1) # normalize vector try: s = 1.0/sqrt(sum(v**2 for v in x.values())) # this should never be zero? except ZeroDivisionError: s = 1.0 for n in x: x[n] *= s # check convergence err = sum([abs(x[n]-xlast[n]) for n in x]) if err < nnodes*tol: return x raise nx.NetworkXError("""eigenvector_centrality(): power iteration failed to converge in %d iterations."%(i+1))""")
[docs]def eigenvector_centrality_numpy(G, weight='weight'): """Compute the eigenvector centrality for the graph G. Parameters ---------- G : graph A networkx graph weight : None or string, optional The name of the edge attribute used as weight. If None, all edge weights are considered equal. Returns ------- nodes : dictionary Dictionary of nodes with eigenvector centrality as the value. Examples -------- >>> G = nx.path_graph(4) >>> centrality = nx.eigenvector_centrality_numpy(G) >>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality]) ['0 0.37', '1 0.60', '2 0.60', '3 0.37'] Notes ------ This algorithm uses the SciPy sparse eigenvalue solver (ARPACK) to find the largest eigenvalue/eigenvector pair. For directed graphs this is "left" eigevector centrality which corresponds to the in-edges in the graph. For out-edges eigenvector centrality first reverse the graph with G.reverse(). See Also -------- eigenvector_centrality pagerank hits """ import scipy as sp from scipy.sparse import linalg if len(G) == 0: raise nx.NetworkXException('Empty graph.') M = nx.to_scipy_sparse_matrix(G, nodelist=G.nodes(), weight=weight, dtype=float) eigenvalue, eigenvector = linalg.eigs(M.T, k=1, which='LR') largest = eigenvector.flatten().real norm = sp.sign(largest.sum())*sp.linalg.norm(largest) centrality = dict(zip(G,map(float,largest/norm))) return centrality # fixture for nose tests
def setup_module(module): from nose import SkipTest try: import scipy except: raise SkipTest("SciPy not available")