Source code for networkx.utils.misc
"""
Miscellaneous Helpers for NetworkX.
These are not imported into the base networkx namespace but
can be accessed, for example, as
>>> import networkx
>>> networkx.utils.is_string_like('spam')
True
"""
# Copyright (C) 2004-2011 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
import sys
import subprocess
import uuid
import networkx as nx
from networkx.external.decorator import decorator
__author__ = '\n'.join(['Aric Hagberg (hagberg@lanl.gov)',
'Dan Schult(dschult@colgate.edu)',
'Ben Edwards(bedwards@cs.unm.edu)'])
### some cookbook stuff
# used in deciding whether something is a bunch of nodes, edges, etc.
# see G.add_nodes and others in Graph Class in networkx/base.py
[docs]def is_string_like(obj): # from John Hunter, types-free version
"""Check if obj is string."""
try:
obj + ''
except (TypeError, ValueError):
return False
return True
[docs]def iterable(obj):
""" Return True if obj is iterable with a well-defined len()."""
if hasattr(obj,"__iter__"): return True
try:
len(obj)
except:
return False
return True
[docs]def flatten(obj, result=None):
""" Return flattened version of (possibly nested) iterable object. """
if not iterable(obj) or is_string_like(obj):
return obj
if result is None:
result = []
for item in obj:
if not iterable(item) or is_string_like(item):
result.append(item)
else:
flatten(item, result)
return obj.__class__(result)
[docs]def is_list_of_ints( intlist ):
""" Return True if list is a list of ints. """
if not isinstance(intlist,list): return False
for i in intlist:
if not isinstance(i,int): return False
return True
[docs]def make_str(t):
"""Return the string representation of t."""
if is_string_like(t): return t
return str(t)
[docs]def cumulative_sum(numbers):
"""Yield cumulative sum of numbers.
>>> import networkx.utils as utils
>>> list(utils.cumulative_sum([1,2,3,4]))
[1, 3, 6, 10]
"""
csum = 0
for n in numbers:
csum += n
yield csum
[docs]def generate_unique_node():
""" Generate a unique node label."""
return str(uuid.uuid1())
[docs]def default_opener(filename):
"""Opens `filename` using system's default program.
Parameters
----------
filename : str
The path of the file to be opened.
"""
cmds = {'darwin': ['open'],
'linux2': ['xdg-open'],
'win32': ['cmd.exe', '/C', 'start', '']}
cmd = cmds[sys.platform] + [filename]
subprocess.call(cmd)
def dict_to_numpy_array(d,mapping=None):
"""Convert a dictionary of dictionaries to a numpy array
with optional mapping."""
try:
return dict_to_numpy_array2(d, mapping)
except AttributeError:
return dict_to_numpy_array1(d,mapping)
def dict_to_numpy_array2(d,mapping=None):
"""Convert a dictionary of dictionaries to a 2d numpy array
with optional mapping."""
try:
import numpy
except ImportError:
raise ImportError(
"dict_to_numpy_array requires numpy : http://scipy.org/ ")
if mapping is None:
s=set(d.keys())
for k,v in d.items():
s.update(v.keys())
mapping=dict(zip(s,range(len(s))))
n=len(mapping)
a = numpy.zeros((n, n))
for k1, row in d.items():
for k2, value in row.items():
i=mapping[k1]
j=mapping[k2]
a[i,j] = value
return a
def dict_to_numpy_array1(d,mapping=None):
"""Convert a dictionary of numbers to a 1d numpy array
with optional mapping."""
try:
import numpy
except ImportError:
raise ImportError(
"dict_to_numpy_array requires numpy : http://scipy.org/ ")
if mapping is None:
s = set(d.keys())
mapping = dict(zip(s,range(len(s))))
n = len(mapping)
a = numpy.zeros(n)
for k1, value in d.items():
i = mapping[k1]
a[i] = value
return a