NetworkX

Source code for networkx.generators.stochastic

"""Stocastic graph."""
#    Copyright (C) 2010-2013 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
import networkx as nx
__author__ = "Aric Hagberg <aric.hagberg@gmail.com>"
__all__ = ['stochastic_graph']

[docs]def stochastic_graph(G, copy=True, weight='weight'): """Return a right-stochastic representation of G. A right-stochastic graph is a weighted digraph in which all of the node (out) neighbors edge weights sum to 1. Parameters ----------- G : graph A NetworkX graph copy : boolean, optional If True make a copy of the graph, otherwise modify the original graph weight : edge attribute key (optional, default='weight') Edge data key used for weight. If no attribute is found for an edge the edge weight is set to 1. """ if type(G) == nx.MultiGraph or type(G) == nx.MultiDiGraph: raise nx.NetworkXError('stochastic_graph not implemented ' 'for multigraphs') if not G.is_directed(): raise nx.NetworkXError('stochastic_graph not implemented ' 'for undirected graphs') if copy: W = nx.DiGraph(G) else: W = G # reference original graph, no copy degree = W.out_degree(weight=weight) for (u,v,d) in W.edges(data=True): d[weight] = float(d.get(weight,1.0))/degree[u] return W