Source code for networkx.generators.stochastic
"""Stocastic graph."""
# Copyright (C) 2010-2013 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
import networkx as nx
__author__ = "Aric Hagberg <aric.hagberg@gmail.com>"
__all__ = ['stochastic_graph']
[docs]def stochastic_graph(G, copy=True, weight='weight'):
"""Return a right-stochastic representation of G.
A right-stochastic graph is a weighted digraph in which all of
the node (out) neighbors edge weights sum to 1.
Parameters
-----------
G : graph
A NetworkX graph
copy : boolean, optional
If True make a copy of the graph, otherwise modify the original graph
weight : edge attribute key (optional, default='weight')
Edge data key used for weight. If no attribute is found for an edge
the edge weight is set to 1.
"""
if type(G) == nx.MultiGraph or type(G) == nx.MultiDiGraph:
raise nx.NetworkXError('stochastic_graph not implemented '
'for multigraphs')
if not G.is_directed():
raise nx.NetworkXError('stochastic_graph not implemented '
'for undirected graphs')
if copy:
W = nx.DiGraph(G)
else:
W = G # reference original graph, no copy
degree = W.out_degree(weight=weight)
for (u,v,d) in W.edges(data=True):
d[weight] = float(d.get(weight,1.0))/degree[u]
return W